150449 (621269), страница 2
Текст из файла (страница 2)
и для функции A(t) получаем уравнение
Интегрируя его, получим решение уравнения (2,8) в виде
где постоянная интегрирования ε0 представляет собой значение ε в момент времени t = 0. Это и есть искомое общее решение; функция x(t) дается мнимой частью выражения (2,10).
Энергия системы, совершающей вынужденные колебания, разумеется, не сохраняется; система приобретает энергию за счет источника внешней силы. Определим полную энергию, передаваемую системе за все время действия силы (от - ∞ до + ∞), предполагая начальную энергию равной нулю. Согласно формуле (2,10) (с нижним пределом интегрирования - ∞ вместо нуля и с
ξ(-∞) = 0) имеем при t → ∞:
С другой стороны, энергия системы как таковой дается выражением
Подставив сюда | ξ (∞) |2, получим искомую передачу энергии
в виде
она определяется квадратом модуля компоненты Фурье силы F(t) с частотой, равной собственной частоте системы.
В частности, если внешняя сила действует лишь в течение короткого промежутка времени (малого по сравнению с 1/ω), то можно положить .
Тогда
Этот результат заранее очевиден: он выражает собой тот факт, что кратковременная сила сообщает системе импульс ∫F dt, не успев за это время произвести заметного смещения.
Колебания систем со многими степенями свободы
Теория свободных колебаний систем с несколькими (s) степенями свободы строится аналогично тому, как было рассмотрено в одномерных колебаниях.
Пусть потенциальная энергия системы U как функция обобщенных координат qi (i = 1, 2, .,., s) имеет минимум при qi=qi0. Вводя малые смещения
xi = qi – qi0 (3,1)
и разлагая по ним U с точностью до членов второго порядка, получим потенциальную энергию в виде положительно определенной квадратичной формы
где мы снова отсчитываем потенциальную энергию от ее минимального значения. Поскольку коэффициенты kik и kki входят в (3, 2) умноженными на одну и ту же величину xi xk, то ясно, что их можно всегда считать симметричными по своим индексам
В кинетической же энергии, которая имеет в общем случае вид
полагаем в коэффициентах qi = qi0 и, обозначая постоянные aik(qo) посредством mik , получаем ее в виде положительно определенной квадратичной формы
Коэффициенты mlk тоже можно всегда считать симметричными по индексам
mik = mki
Таким образом, лагранжева функция системы, совершающей свободные малые колебания:
Составим теперь уравнения движения. Для определения входящих в них производных напишем полный дифференциал функции Лагранжа
Поскольку величина суммы не зависит, разумеется, от обозначения индексов суммирования, меняем в первом и третьем членах в скобках i на k, a k на i; учитывая при этом симметричность коэффициентов mik и kik, получим:
Отсюда видно, что
Поэтому уравнения Лагранжа
Они представляют собой систему s(i = l, 2, … , s) линейных однородных дифференциальных уравнений с постоянными коэффициентами.
По общим правилам решения таких уравнений ищем s неизвестных функций xk(t) в виде
где Аk — некоторые, пока неопределенные, постоянные. Подставляя (3,6) в систему (3,5), получаем по сокращении на систему линейных однородных алгебраических уравнений, которым должны удовлетворять постоянные Аk:
Для того чтобы эта система имела отличные от нуля решения, должен обращаться в нуль ее определитель
Уравнение (3,8)—так называемое характеристическое уравнение — представляет собой уравнение степени s относительно ω2. Оно имеет в общем случае s различных вещественных положительных корней ω²a,
а=1, 2, … , s (в частных случаях некоторые из этих корней могут совпадать). Определенные таким образом величины ωа называются собственными частотами системы.
Вещественность и положительность корней уравнения (3,8) заранее очевидны уже из физических соображений. Действительно, наличие у ω мнимой части означало бы наличие во временной зависимости координат хk (3,6) (а с ними и скоростей xk) экспоненциально убывающего или экспоненциально возрастающего множителя. Но наличие такого множителя в данном случае недопустимо, так как оно привело бы к изменению со временем полной энергии E=U+T системы в противоречии с законом ее сохранения.
В том же самом можно убедиться и чисто математическим путем. Умножив уравнение (3,7) на и просуммировав затем по i, получим:
откуда
Квадратичные формы в числителе и знаменателе этого выражения вещественны в силу вещественности и симметричности коэффициентов kik и mik , действительно,
Они также существенно положительны, а потому положительно и ω2.
После того как частоты ωа найдены, подставляя каждое из них в уравнения (3,7), можно найти соответствующие значения коэффициентов Аk. Если все корни ωа характеристического уравнения различны, то, как известно, коэффициенты Ak пропорциональны минорам определителя (3,8),в котором ω заменена соответствующим значением ωа, обозначим эти миноры через ∆ka. Частное решение системы дифференциальных уравнений (3,5) имеет, следовательно, вид
где Са— произвольная (комплексная) постоянная.
Общее же решение дается суммой всех s частных решений. Переходя к вещественной части, напишем его в виде
Где мы ввели обозначение
Таким образом, изменение каждой из координат системы со временем представляет собой наложение s простых периодических колебаний
Θ1, Θ2, … , Θs с произвольными амплитудами и фазами, но имеющих вполне определенные частоты.
Естественно возникает вопрос, нельзя ли выбрать обобщенные координаты таким образом, чтобы каждая из них совершала только одно простое колебание? Самая форма общего интеграла (3,9) указывает путь к решению этой задачи.
В самом деле, рассматривая s соотношений (3,9) как систему уравнений с s неизвестными величинами Θа, мы можем, разрешив эту систему, выразить величины Θ1, Θ2, …, Θs через координаты x1, x2, ..., xs. Следовательно, величины Θа можно рассматривать как новые обобщенные координаты. Эти координаты называют нормальными (или главными), а совершаемые ими простые периодические колебания — нормальными колебаниями системы.
Нормальные координаты Θа удовлетворяют, как это явствует из их определения, уравнениям
Это значит, что в нормальных координатах уравнения движения распадаются на s независимых друг от друга уравнений. Ускорение каждой нормальной координаты зависит только от значения этой же координаты, и для полного определения ее временной зависимости надо знать начальные значения только ее же самой и соответствующей ей скорости. Другими словами, нормальные колебания системы полностью независимы.
Из сказанного очевидно, что функция Лагранжа, выраженная через нормальные координаты, распадается на сумму выражений, каждое из которых соответствует одномерному колебанию с одной из частот ωа, т. е. имеет вид
где та — положительные постоянные. С математической точки зрения это означает, что преобразованием (3,9) обе квадратичные формы — кинетическая энергия (3,3) и потенциальная (3,2) — одновременно приводятся к диагональному виду.
Обычно нормальные координаты выбирают таким образом, чтобы коэффициенты при квадратах скоростей в функции Лагранжа были равны 1/2. Для этого достаточно определить нормальные координаты (обозначим их теперь Qa ) равенствами
Тогда
Все изложенное мало меняется в случае, когда среди корней характеристического уравнения имеются кратные корни. Общий вид (3,9), (3,10) интеграла уравнений движений остается таким же (с тем же числом s членов) с той лишь разницей, что соответствующие кратным частотам коэффициенты ∆kа уже не являются минорами определителя, которые, как известно, обращаются в этом случае в нуль.
Каждой кратной (или, как говорят, вырожденной) частоте отвечает столько различных нормальных координат, какова степень кратности, но выбор этих нормальных координат не однозначен. Поскольку в кинетическую и потенциальную энергии нормальные координаты (с одинаковым ωа) входят в виде одинаково преобразующихся сумм можно подвергнуть любому линейному преобразованию, оставляющему инвариантной сумму квадратов.
Весьма просто нахождение нормальных координат для трехмерных колебаний одной материальной точки, находящейся в постоянном внешнем поле. Помещая начало декартовой системы координат в точку минимума потенциальной энергии U(x,y,z), мы получим последнюю в виде квадратичной формы переменных х, у, z, а кинетическая энергия