150333 (621256), страница 2
Текст из файла (страница 2)
На основе опытов и анализа примеров из повседневной жизни подводят учащихся к выводу, что внутреннюю энергию тела можно изменить путем теплопередачи (теплообмена) окружающим телам и совершения механической работы (трение, удар, сжатие).
Надо рассмотреть с учащимися и противоположные процессы, результат которых — уменьшение внутренней энергии тела. Так, при теплообмене нагретого утюга с окружающим воздухом его внутренняя энергия уменьшается, о чем можно судить по понижению температуры утюга с течением времени. Подобное явление происходит со всеми телами, начальная температура которых была выше окружающих тел.
Уменьшение внутренней энергии тел в результате совершения ими механической работы можно показать на следующем опыте.
Берут бутылку из-под молока и наливают в нее чайную ложку воды. Горлышко бутылки закрывают пробкой с продетой через нее стеклянной трубкой. Трубку с помощью резинового шланга соединяют с патрубком насоса Комовского для нагнетания воздуха. При нагнетании воздуха в бутылку давление в ней повышается и наконец становится таким, что под его действием вылетает пробка. На стенках бутылки при этом появляются капельки воды, что свидетельствует о понижении температуры находящихся в ней воздуха и пара. Образование капелек тумана усиливается, если в бутылку поместить дымящуюся спичку.
При демонстрации данного опыта должны быть приняты меры предосторожности: пробку следует смочить, чтобы она сравнительно легко выбрасывалась из горлышка бутылки.
Процесс, происходящий в описанном опыте, требует тщательного анализа на основе молекулярно-кинетических представлений.
Молекулы воздуха и водяного пара, находясь в непрерывном беспорядочном движении, бомбардируют стенки сосуда, в который они заключены. Чем выше температура воздуха, тем быстрее молекулы движутся. Если одна из стенок сосуда, в котором находится воздух, подвижна (в опытах это пробка), то она движется под ударами молекул. Энергия молекул при этом расходуется на совершение механической работы (по преодолению сил трения, по подъему пробки). В результате внутренняя энергия воздуха (и находящегося в нем пара) уменьшается.
Итак, учащиеся приходят к выводу: внутренняя энергия тела может изменяться (увеличиваться или уменьшаться) со временем при теплообмене данного тела с окружающими телами и при совершении механической работы. Для закрепления полученных знаний учащиеся отвечают на ряд вопросов:
Почему искусственные спутники Земли, не снабженные специальной тепловой зашитой, и метеориты сгорают, когда они в конце своего движения входят в плотные слои земной атмосферы?
Мука из-под жерновов выходит горячей, хлеб из печи вынимают тоже горячим. Укажите причины повышения температуры муки и хлеба. Изменилась ли внутренняя энергия этих тел и почему?
Обладает ли внутренней энергией тело, температура которого 0 °С?
Содержание этой темы по существу подводит учащихся к представлению о втором законе термодинамики как утверждении о невозможности самопроизвольного перехода теплоты от менее нагретого тела к более нагретому. Учащиеся должны усвоить, что теплопередача всегда происходит в определенном направлении: от тела с более высокой температурой к телу с более низкой температурой.
При объяснении механизма теплопередачи опираются на имеющиеся у учащихся сведения о молекулярно-кинетической теории.
Изложение начинают с постановки проблемного опыта. На деревянный цилиндр накалывают ряд кнопок, обертывают его одним слоем бумаги (рис. 20.5). При кратковременном помещении цилиндра в пламя горелки происходит неравномерное обугливание бумаги. Ставят вопрос: «Почему бумага, прилегающая к кнопкам, обугливается меньше?» Обобщая ответы учащихся и имеющиеся у них представления, устанавливают факт передачи теплоты от одной части твердого тела к другой и объясняют его. При нагревании происходит увеличение скорости движения молекул, из которых состоит тело. Это движение передается соседним молекулам, в результате скорость этих молекул и, следовательно, температура данной части тела возрастают. Выразителен также опыт, рассмотренный в учебнике.
Затем вводят понятие о хороших проводниках тепла — металлах и плохих проводниках (изоляторах) —дерево, стекло. Различную теплопроводность веществ — стекло и железо, железо и медь — наглядно демонстрируют на опыте по отделению гвоздиков, приклеенных парафином или воском к стержням, при их нагревании.
Рассматривают использование в технике, быту и в школьных физических приборах свойств тел по-разному проводить тепло. Например, плохую теплопроводность воздуха используют в устройстве школьного прибора калориметра.
Объяснение устройства и назначения калориметра необходимо пояснить на опыте с ним.
Полезно решить ряд задач. Здесь могут быть предложены задачи следующего содержания:
Взяв в руку гвоздь длиной 5—6 см, внесите его конец в пламя спички. На основе опыта сравните теплопроводность дерева и железа. Объясните, почему рука чувствует гвоздь особенно горячим уже после того, как спичка погаснет.
2. На севере меховые шапки носят, защищаясь от холода, а на юге (в Туркмении) — от жары. Объясните целесообразность этого.
Полезно сообщить учащимся сравнительные данные теплопроводности некоторых твердых, жидких и газообразных тел. Железо, например, в 163 раза лучше проводит тепло, чем дуб, и в 100 раз лучше, чем вода; вода — в 27 раз лучше, чем воздух.
Изучение конвекции можно начать с постановки опыта, расположив, как указано на рисунке 20.6, стеклянную трубку с водой над пламенем спиртовки. При этом показания одного термометра (на рисунке слева) останутся почти без изменений, а другого (на рисунке справа) начнут быстро увеличиваться. Ставят вопрос: «Почему вода в одном случае хорошо, а в другом плохо передает тепло?»
В беседе выясняют, что так как вода при нагревании расширяется, то плотность ее уменьшается (можно, например, сообщить, что масса 1 м3 воды при 100 °С меньше, чем при 0 °С на 42 кг) и поэтому под действием архимедовой силы более легкие, нагретые слои воды поднимаются вверх.
Сущность явления следует раскрыть, нагревая, например, свечкой колбу с водой, на дне которой помещен кристаллик марганцовокислого калия, окрашивающего конвекционные потоки.
Для демонстрации теплопроводности и конвекции в газах можно поставить опыт, подобный показанному на рисунке 20.5, нагревая в трубке воздух.
Затем с помощью бумажных вертушек и дыма демонстрируют образование восходящих потоков воздуха над нагревателями. Можно сообщить учащимся, что, например, масса 1 м3 воздуха при 100 "С в 1,4 раза меньше, чем при 0 °С, поэтому конвекция в воздухе, как и в жидкостях, объясняется действием архимедовой силы.
В качестве примера конвекции в природе рассматривают образование дневных и ночных бризов, а в технике — образование тяги в дымоходах, конвекцию в водяном отоплении, водяном охлаждении двигателя внутреннего сгорания.
Несложные опыты, а также наблюдения теплопроводности и конвекции нужно рекомендовать учащимся выполнить самостоятельно дома. Изложение вопроса следует закончить постановкой ряда качественных задач.
ИЗЛУЧЕНИЕ
Понятие об излучении как одном из способов передачи тепла можно начать с постановки опыта по нагреванию колбы, соединенной с манометром, от электрообогревателя с отражателем. По изменению уровней жидкости в манометре учащиеся приходят к выводу о нагревании воздуха в колбе.
Перед учащимися ставится вопрос: вследствие чего же воздух в колбе нагревается? Ведь теплопроводность здесь исключена: слой воздуха, отделяющий колбу от спирали электрообогревателя — плохой проводник тепла, а конвекция в данном случае исключена, так как колба расположена на одном уровне со спиралью. Возникает проблемная ситуация, в результате обсуждения которой учащиеся приходят к заключению о том, что в данном случае имеет место особый вид теплопередачи — излучение — теплопередача с помощью невидимых лучей. Учитель сообщает, что с помощью излучения передается на Землю тепло от Солнца, находящегося от Земли на расстоянии 150 млн. км.
Особенности явления выясняют с помощью опытов, описание которых приведено в книге С. А. Хорошавина «Физический эксперимент в средней школе. 6—7 классы» (М.: Просвещение, 1988.— С. 70).
Затем переходят к раскрытию трудного для понимания учащихся понятия о том, что тела с темной поверхностью при равной температуре не только лучше поглощают энергию и сильнее нагревают, но и лучше излучают ее, чем тела, имеющие светлую поверхность. Для этого ставят опыт с сосудом 1 (рис. 20.7), одна стенка которого покрыта черной, а другая белой краской. В сосуд наливают кипяток и рядом помещают два теплоприемника 2 и 3, присоединенные к различным коленам манометра или, что лучше, концам горизонтальной трубки 4, в которую помещен столбик жидкости 5. Через некоторое время столбик жидкости начнет перемещаться в результате большого повышения давления в теплоприемнике, расположенном у зачерненной стенки сосуда, показывая тем самым, что зачерненная поверхность путем излучения передает больше энергии, чем светлая поверхность.
Полезно также поставить опыт с двумя сосудами, один из которых выкрашен белой, а другой черной краской. В сосуды наливают кипяток и вставляют термометры, по которым через некоторое время будет видно, что вода в черном сосуде остывает быстрее.
Типичными задачами по данному вопросу темы являются следующие:
Все знают, как «пышет жаром» от раскаленной железной печки, от углей или электроплитки. Докажите, что в этом случае человек ощущает тепло, которое передается прежде всего излучением.
Один ученик сказал, что летом ходить в белой одежде прохладнее, поскольку она лучше отражает лучи и меньше нагревается. Другой возразил ему, сказав, что прохладнее в черной одежде, так как она лучше излучает энергию. Кто из них прав?
4. КОЛИЧЕСТВО ТЕПЛОТЫ. ЕДИНИЦЫ КОЛИЧЕСТВА ТЕПЛОТЫ
Процесс совершения механической работы и процесс теплопередачи имеют общий признак — изменяют внутреннюю энергию тела. Меру изменения внутренней энергии путем совершения механической работы назвали просто работой, а меру изменения внутренней энергии в процессе теплопередачи — количеством теплоты.
До определения единицы количества теплоты следует вспомнить с учащимися о физической величине — механической работе и ее расчете. Механическая работа прямо пропорциональна силе и длине пути.
Аналогично количество теплоты как мера изменения внутренней энергии тоже зависит от нескольких физических величин. Напоминают о том, что внутренняя энергия определяется скоростью теплового движения частиц, из которых состоит тело, следовательно, количество теплоты как мера изменения внутренней энергии связано с температурой тела. Если температура тела возросла, это означает, что тело получило некоторое количество теплоты, если температура тела понизилась — оно отдало некоторое количество теплоты.
Таким образом, можно сказать, что количество теплоты зависит от изменения температуры тела. Количество теплоты зависит также от второй физической величины — массы тела. В самом деле, на спиртовке за определенное время мы сможем вскипятить воду в пробирке, чего не сделаем в чайнике. Объясняется это тем, что количество теплоты за промежуток времени t будет достаточным для нагревания до 100 °С воды в пробирке и недостаточным для нагревания до температуры кипения воды в чайнике. Количества теплоты, необходимые для кипячения воды в пробирке и чайнике, будут различными; как показывает опыт, чем больше масса тела, в данном случае воды, тем большее количество теплоты потребуется для нагревания его на одну и ту же разность температур.
То же самое справедливо и при охлаждении тела. Отсюда можно сделать вывод, что количество теплоты пропорционально массе тела.
Обобщая оба случая, можно говорить о том, что количество теплоты прямо пропорционально массе тела и его разности температур в начале и в конце теплообмена.
Зависимость количества теплоты, переданного телу при нагревании, от рода вещества, из которого изготовлено тело, наблюдают в опыте при нагревании двух тел равной массы, но изготовленных из различных веществ. Единицами внутренней энергии служат джоуль, килоджоуль. Однако исторически сложилось так, что единицы количества теплоты были введены раньше, чем стало известно молекулярное строение вещества и выяснен вопрос об энергии движения молекул. Поэтому в свое время были введены специальные единицы для измерения количества теплоты: калория и килокалория, которые пока еще применяются при расчетах.
Затем дают определение калории. Калория — количество теплоты, которое необходимо для нагревания 1 г воды на 1 °С, т. е. калория есть мера приращения внутренней энергии 1 г воды при повышении температуры на 1 °С: 1 кал =4,19 Дж. В дальнейшем расчеты внутренней энергии следует выполнять в джоулях.
5. УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ ВЕЩЕСТВА. РАСЧЕТ КОЛИЧЕСТВА ТЕПЛОТЫ