150212 (621238), страница 5
Текст из файла (страница 5)
Подібний підхід до двовимірної задачі хвильової енергії був зроблений
Фалькао та Сарменто (1980), продовжуючи роботу Стокера (1957). Дана робота узагальнює їхні результати для довільних розподілів тиску як для дво- так і тривимірного випадку. У іншому контексті Огільві (1969) також розглянув деякі двовимірні задачі, які включають області тиску. Отримані результати він використав для передбачення руху довгого транспортного засобу з повітряною подушкою. Він також вирішив явно важку задачу однорідної області тиску по частині поверхні, яка обмежена двома однаково зануреними вертикальними пластини. Обчислення рішення не проводилось.
Для постановки задачі розглядалась конструкція, встановлена таким чином, що задній кінець був відкритим, а передній – закритий. Передній кінець перетинає вільну поверхню, захоплюючи обсяг повітря в ряд ізольованих секцій, кожна з яких має свою власну внутрішню вільну поверхню. Ефект ряду набігаючих хвиль змушує внутрішні вільні поверхні коливатися з тією ж частотою, як і набігаюча хвиля, змушуючи їх повітряні обсяги рухатися назад і вперед через стискувачі, які містяться в турбінах. Приймається, що стискаємість повітря маленька, таким чином, щоб повітряний тиск у кожній турбіні був такий же, як однорідний розподіл тиску трохи вище відповідної вільної поверхні. Повна середня оцінка виконання роботи буде сума середнього часу вироблення цих тисків і об’ємів потоків через турбіни, що у свою чергу є тим самим, що й вироблення просторового середнього числа вертикальної швидкості кожної внутрішньої вільної поверхні і її областей. В роботі припускається, що характеристики турбіни лінійні так, що зниження тиску поперек турбіни пропорційне об’єму потоку через неї. [30]
В роботі [31] розглянута задача про глісуючу пластину в постановці Л.І. Сєдова. А також зазначено, що теорія Сєдова правильно оцінює коефіцієнти сил, але для вільної поверхні й висоти підйому глісера дає ніби парадоксальний, на перший погляд, результат – із зростанням числа Фруда висота підйому глісера росте як і нескінченна для невагомої рідини. Такий саме результат для невагомої рідини було отримано раніше М.І. Гуревичем та А.Р. Янпольським [3] на основі ідей Г.Вагнера [4]. Тому в цій статті досліджено, що вказаний факт є наслідком прийнятого в стаціонарній теорії вибору змоченої довжини глісера як характерної для визначення числа Фруда, і розв’язана задача про глісування пластини із заданим навантаженням й сталим кутом ходу. При такій постановці задачі змочена довжина глісера є невідомою величиною. Встановлено, що із зростанням числа Фруда (із збільшенням швидкості руху) висота підйому глісера та змочена довжина зменшуються, що відповідає явищам, які реально спостерігаються на практиці.
У реальних умовах глісування висота підйому глісера обмежується його вагою (навантаженням), а при збільшенні числа Фруда (збільшенні швидкості руху) зменшується змочена довжина. Як характерна довжина в інженерній практиці та в експериментах використовується величина , де
– навантаження;
– питома вага води.
Вирішена плоска задача глісування пластини при заданому навантаженні , в якій за характерну довжину взято
. Змочена довжина пластини при цьому невідома величина.
Оскільки задача ставиться, як регенерація енергії при русі хвиль в хвильовому сліді, необхідно дослідити рух системи пластин, які глісують одна за іншою. Принцип регенерації в таких умовах сформулював вперше Г.Є. Павленко, і суть його полягає в наступному. Передня глісуюча поверхня, втрачаючи роботу на своє просування, вкладає деяку частку енергії у хвильовий рух. Частина цієї енергії може бути використана задньою поверхнею. З цієї точки зору необхідно знайти найвигідніше розміщення заданої поверхні на хвильовій поверхні. Якщо система рухається в умовах незалежного хвилювання, необхідно враховувати також вплив незалежних хвиль.
В [32] задача про усталений рух системи профілів у вигляді слабко зігнутих пластин по хвильової поверхні вагомої рідини розв’язана при звичайних припущеннях теорії хвиль малої амплітуди. Задача приводиться до системи сингулярних інтегральних рівнянь з ядрами Коші відносно функцій, що описують розподіл тиску по профілям. За допомогою чисельного методу досліджено основні закономірності взаємовпливу пластин.
На конференції в м. Чебоксари в 2002 році О.А. Русецький представив доповідь, в якій йшла мова про вплив каверни при глісуванні двореданного глісеру [33].
В роботі [34] розглянуто теоретичні основи принципу Г. Є. Павленка на прикладі системи двох незв‘язаних глісуючих пластин, в [35] розглянута задача для системи жорстко зв’язаних пластин.
Дослідження руху пластин – глісування може бути корисним також при розробці систем злету та посадки гідролітаків. Так, російська організація WIG Crafts запропонувала нове програмне забезпечення Autowing 1.0 для літакобудування.[36]
Висновок
В даній роботі представлений інформаційний пошук по темі "Гідродинаміка руху глісуючих пластин". Проблема дослідження руху по водній поверхні на даний момент дуже актуальна в зв’язку з такими факторами, як глобальне загострення екологічної ситуації та прагнення всього наукового та технічного світу досягати все більші і більші швидкості транспортних засобів. По цих напрямах водний транспорт є дуже зручним та перспективним, що і приваблює вчених і науковців всього світу. По-перше, в морських хвилях зосереджена величезна кількість енергії, використання якої допомогло б покращити ситуацію по збереженню енергетичних ресурсів планети та зменшити шкідливі викиди спалювання палива в атмосферу. По-друге, завдяки можливості використання енергії хвиль можна досягти значного підвищення швидкості судна з мінімальними енергетичними затратами. Алегорично це можна сформулювати так – "хвилям не потрібно опиратися, варто підкоритися". Тобто, при правильній конструкції днища судна можна не тільки зменшити опір хвильовій поверхні, а навіть використовувати морські хвилі в якості додаткового джерела тяги. Для досягнення цих цілей першочергово необхідно сформулювати та вирішити задачі гідродинаміки для отримання всіх гідродинамічних характеристик судна, яке рухається в умовах природного хвилювання та побудувати математичну модель такого руху. Моделювання руху судна в морському просторі є дуже складною задачею, в зв’язку з випадковістю процесів, які відбуваються в морських хвилях.
Окрім того, через різні умови руху (великі і малі швидкості, глибина водоймища, його протяжність у просторі, тощо) існує дуже велика кількість задач. Для вирішення цих задач застосовуються різноманітні припущення, апроксимації, нехтування, що приводить до великої різноманітності методів, методик, теорій. В представленій роботі проведений поглиблений пошук та аналіз існуючих на сьогодні рішень та пропозицій по даній тематиці. Якщо коротко охарактеризувати результати проведеного пошуку, можна відмітити, що найчастіше для вирішення гідродинамічних задач використовуються теорії, аналогічні теоріям класичної аеродинаміки. Це пов’язано з тим, що рух в повітрі і рух в рідині мають схожі характеристики і в них виконуються майже одні і ті ж закони. А оскільки теорія аеродинаміки на сьогодні більш вивчена та досліджена, її використання до задач гідродинаміки оправдовано. Найчастіше до гідродинамічних задач застосовуються Теорія тонкого тіла та Нелінійна гідродинамічна теорія. Для вирішення задач руху судна, його спрощено представляють у вигляду корпусу (для тривимірних задач) або пластини (для двовимірних задач). Одна з найчастіше використовуваних методик полягає в тому, що пластину або корпус замінюють поверхневими розподілами тиску.
А вже потім використовуючи необхідні інструментарії складають математичну модель руху. Математична модель руху представляє собою систему інтегральних сингулярних рівнянь, вирішення якої потребує застосування складних методів. Ці системи різні в кожному окремому випадку, але найчастіше зустрічаються системи інтегральних рівнянь з ядрами Коші. Варто також відмітити, що підтвердження достовірності результатів отриманих шляхом проведення числового експерименту викликає певні труднощі. По-перше, виконання повномасштабного експерименту вимагає значних матеріальних затрат та умов, для нього потрібні великі басейни, в яких можна було б створювати різні умови для експериментального дослідження руху судна. По-друге, експериментально не можливо врахувати припущення, які вводяться при теоретичному вивченні проблеми. По-третє, математичні моделі як правило складаються для дослідження руху судна в умовах природного хвилювання, наприклад, нескінченно великі відстані морського простору навколо судна, а експериментально провести такі дослідження неможливо, оскільки навіть найбільший басейн матиме малі розміри порівняно з справжнім океаном і т. ін. В зв’язку з такими умовами, при порівнянні теоретичних та експериментальних результатів як правило виникають неточності. Іноді вони не суттєві, а іноді мають принципове значення. Тому будь-які результати, які отримуються в даному напрямку не можуть заслуговувати на оцінки абсолютно істинних.
Але незважаючи на це, дані теоретичних досліджень вже використовуються при конструювання певного типу суден. При цьому продовжується проводитись удосконалення існуючих методів, поряд з математичними проводяться емпіричні експерименти. В умовах сучасного рівня науки і техніки виконувати ці задачі з кожним днем стає все легше та швидше. За допомогою комп’ютера та певного програмного забезпечення проведення дослідження математичної моделі значно спростилося. Вже сьогодні існують організації, які займаються продажем спеціального програмного забезпечення для суднобудування, будування гідролітаків, водних планерів та ін. Але при цьому основна кількість гідродинамічних задач руху судна або гідролітака по водній поверхні залишається не вирішена.
Перелік посилань
-
Wagner Herbert, "Hydrodynamic properties of planing surface", Z.f.a.M.N, vol. 12, no. 4. 1932, pp. 193-215
-
L. Sedov, "On the theory of unsteady planing and the motion of a wing with vortex separation", NASA, no. 942, Washington 1940, pp. 1-12
-
Doctors, L. . "Representation of three dimensional planing surfaces by finite elements", 1st Conference on Numerical Ship Hydrodynamics, 1975, pp. 517-537
-
Cheng, X and Wellicome, J.F., "Study of planing hydrodynamics using strips of transversely variable pressure", Journal of ship research, vol. 38, no. 1, 1994, pp. 30-41
-
Bessho, M and Komatsu, M, "Two-dimensional unsteady planing surface", Journal of ship research, vol. 28, no. 1, 1984, pp. 18-28
-
J.V. Wehausen and E. V. Laitone, "Surface waves", Encyclopedia of Physics, vol. IX, 1960, Springer Verlag, Berlin, pp. 446-476
-
Young T. Shen and T. Francis Ogilvie, "Nonlinear hydrodynamic theory for finite-span planing surfaces", Journal of ship research, March 1972, pp. 3-20
-
Tore Ulstein and Odd M. Faltinsen, "Two-dimensional unsteady planing", Journal of ship research, vol.40, no. 3, 1996, pp. 200-210
-
Mottard, E.J., "Investigation of self-excited vibration at large wetted aspect ratio", DTMB Report 2017, David Taylor Model Basin, 1936
-
E.O. Tuck and L. Lazauskas, "Lifting surfaces with circular planforms", Journal of ship research, vol. 49, no. 4, 2005, pp. 274-278
-
Tulin M., "The theory of slender planing surfaces at high speed", Schiffstechnik, 4, 21, 1957, pp. 125-133
-
John P. Breslin, "Chines-dry planing of slender hulls: a general theory applied to prismatic surfaces", Journal of ship research, vol. 45, no. 1, 2001, pp. 59-72
-
Vorus W.S., "A flat cylinder theory for vessel impact and steady planing resistance", Journal of ship research, vol. 40, no. 2, 1996, pp. 89-106
-
H. Kihara, Sh. Nalto, M. Sueyoshl, "Numerical analysis of the influence of above-water bow form on added resistance using nonlinear slender body theory", Journal of ship research, vol. 49, no. 3, 2005, pp. 191-206
-
E. Thornhill, N. Bose, B. Veitch, P. Liu, "Planing hull perfomance evaluation using a general purpose CFD code", Twenty-fourth symposium on naval hydrodynamics, 2003, pp. 1-14
-
A.J. Hermans, "Added resistance by means of time-domain models in seakeeping", Journal of ship research, vol. 49, no. 4, 2005, pp. 252-262
-
T.P. Gourlay and E. O. Tuck, "The maximum sinkage of a ship", Journal of ship research, vol. 45, no. 1, 2001, pp. 50-58
-
D.P. Wang and P. Rispin, "Three-dimensional planing at high Froude number", Journal of ship research, September 1971, pp. 221-230
-
K.J. Bai and J.H. Han, "A localized finite-element method for the nonlinear steady waves due to a two-dimensional hydrofoil", Journal of ship research, vol. 38, no. 1, 1994, pp. 42-51
-
A.А. Rusetsky, "Estimation of perspectives for development of fast speed waterborne transportation basing on the experience of design and exploitation of Russian fast speed vehicles", The International Summer Scientific School "High Speed Hydromechanics", June 2004, Cheboksary, Russia, pp. 15-20
-
William S. Vorus, "Hydrodynamics of high-speed watercraft with sectionally flat bottoms", The International Summer Scientific School "High Speed Hydrodynamics", June 2002, Cheboksary, Russia, pp. 291-306
-
Pengfei Liu, "Propulsive performance of a twin-rectangular-foil propulsor in a counterphase oscillation", Journal of ship research, vol. 49, no. 3, 2005, pp. 207-215
-
A.А. Rusetsky, "Engineering application of separated cavitation flows in shipbuilding", The International Summer Scientific School "High Speed Hydrodynamics", June 2002, Cheboksary, Russia, pp. 93-97
-
V.M. Pashin, A.N. Ivanov, V.G. Kaliuzhny, A.G. Lyakhovitsky, G.A. Pavlov, "Hydrodynamics design of artificially-ventilated ships", SP 2001: Lavrentiev Lectures, paper 13, pp. 117-123
-
Todd McComb, "A numerical study of very high speed flat ship theory", Journal of ship research, vol. 36, no. 1, 1991, pp. 63-72
-
Cole S.L., "An analytic approach to very high speed flat ship theory", Journal of ship research, vol. 33, no. 1, 1989, pp. 29-34
-
T.T. Huang and K.K. Wong, "Disturbance induced by a pressure distribution moving over a free surface", Journal of ship research, September 1970, pp. 195-203
-
D. H. Peregrine, "The energy distribution resulting from impact on a floating body", J. Fluid Mech, vol. 417, Cambridge University Press, 2000, pp. 157-181
-
A.J. N.A. Sarmento and A. F. de O. Falcao, "Wave generation by an oscillating surface-pressure and its application in wave-energy extraction", J. Fluid Mech, vol. 150, 1982, pp. 467-485
-
D.V. Evans, "Wave-power absorption by system of oscillating surface pressure distributions", J. Fluid Mech, vol. 114, 1982, pp. 481-499
-
Макасеєв М.В. Глісування пластини із заданим навантаженням по поверхні вагомої рідини. – Вісті НТУУ ”КПІ”- К.: НТУУ “КПІ”, 2002.-133-140
-
Довгий С.О. Макасеєв М.В. Глісування системи пластин тандем по поверхні вагомої рідини. - Вісті НТУУ ”КПІ”- К.: НТУУ “КПІ”, 2002.- 96-100
-
Alexandr A. Rusnetsky. Engerening application of separated cavitation flows in shipbuilding.-The International Summer Scientific School “High Speed Hydrodinamics”, June 2002, Cheboksari,Russia, 93-97
-
Макасєєв М.В., Лисак А.В. Використання та регенерація хвильової енергії системою глісуючих профілів//Приладобудування 2003: стан і перспективи. Тези доповідей. - Київ, НТУУ “КПІ”. – 2003. С. 106-107
-
Макасєєв М.В., Лисак А.В. Регенерація хвильової енергії при глісуванні системи зв’язаних пластин із заданим навантаженням//Приладобудування 2004: стан і перспективи. Тези доповідей. - Київ, НТУУ “КПІ”. – 2004. С. 125126.
-
http://www.cl.spb.ru/taranov/Index.htm