150122 (621219), страница 7
Текст из файла (страница 7)
вт/м2 град, (10)
а для пароперегрівників
вт/м2 град. (11)
Для повітропідігрівників вводять загальний коефіцієнт використання поверхні нагріву :
вт/м2 град. (12)
Середній температурний напір t залежить від взаємного напрямку руху середовищ. Для найчастіше вживаних схем прямотоку і протитоку температурний напір визначається як середньо-логарифмічна різниця температур за формулою (III-63).
За цією формулою розраховується t не тільки для чистого прямотоку й протитоку, але й для схем східчастого прямотоку й протитоку, що найчастіше зустрічаються в пароперегрівниках і водяних економайзерах. Для схем, відмінних від прямотоку й протитоку (перехресний потік теплоти), t визначають на основі спеціальних розрахункових рекомендацій і номограм.
4.6 Загальна схема розрахунку конвективних елементів
Звичайно, при тепловому розрахунку користуються рівняннями теплообміну і теплового балансу, записаними не в кдж на годину, a в кдж на 1 кг палива.
Рівняння теплообміну:
кдж/кг. (13)
Рівняння теплового балансу:
Q = (I – I + Iпрс) кдж/кг (14)
де Q – теплота, сприйнята розраховуваним елементом, віднесена до 1 кг палива; Вр – розрахункова витрата палива, кг/год; – коефіцієнт збереження теплоти, що враховує втрату теплоти в навколишнє середовище ( 1); I і I – ентальпії продуктів горіння на вході і виході з елемента, кдж/кг; Iпрс – кількість теплоти, що вноситься присмоктуваним повітрям, кдж/кг.
У загальному випадку перевірного розрахунку теплосприймального елемента рекуперативного типу відома (намічена) величина поверхні нагріву Н, і з попереднього розрахунку відомі температура і ентальпія газів (, І) і робочої речовини (t1, i1) перед розраховуваною поверхнею нагріву.
Величина Н намічається на підставі компоновочних і техніко-економічних міркувань. Зокрема, беруться до уваги рекомендовані значення швидкостей газів і коефіцієнтів теплопередачі в конвективних елементах. При дуже малих значеннях k елемент набуває великих розмірів, стає громіздким і дорогим. При дуже великих значеннях k зростає вартість енергії, що витрачається на перемагання опорів елементів. При виборі швидкостей ураховується також необхідність запобігати золовому зносові i заносові поверхні нагріву. Значення швидкостей газів звичайно коливається в межах від 7 до 15 м/сек.
Попередньо оцінивши кінцеву температуру і ентальпію i газів, можна з рівняння теплового балансу дістати кінцеву ентальпію i2 і температуру t2 робочої речовини. Наприклад, для водяного економайзера (або його пакета) при відомій витраті води D кг/год
(I – I + Iпрс) = (і2 – і1) = Qб кдж/кг. (15)
Тепер можна визначити середній температурний напір t (температури г, г, t1, t2 відомі) і коефіцієнт теплопередачі k, бо всі дані для цього є. Геометричні розміри газоходу, його ширина b і глибина або висота h і конструктивні характеристики пучка d, s1, s2 відомі. Швидкість газів
м/сек. (16)
Живий переріз газоходу
F = bh – n1 l d м2, (17)
де n1 – число труб в ряду; l – довжина труб, м.
Решту величин беруть з відповідних номограм і раніше поданих співвідношень.
Після цього з рівняння (IV-13) визначають теплосприймання поверхні нагріву Qm, яке порівнюють з величиною Qб, одержаною з теплового балансу (IV-14). При розходженні до 2% розрахунок не уточнюється. При більшому розходженні треба задатись новим значенням г. Ув'язати розрахунки можна методом послідовного наближення або, простіше, за допомогою графічної інтерполяції, задавшись двома значеннями: г(1 і 2).
Розрахункові значення шуканої температури газів p, визначають (наближено, але з достатньою точністю) по проекції на вісь абсцис точки перетину прямих Qт і Qб.
5. Допоміжне обладнання котельних установок. Водопідготовка
5.1 Тягодуттьове і живильне обладнання
Процес горіння палива можливий при безперервному підведенні в топку повітря і видалянні продуктів згоряння. Подавати повітря і видаляти димові гази можна або природною тягою димової труби (димаря), або примусово за допомогою вентиляторів і димососів. Природна тяга створюється димовою трубою внаслідок того, що густина газів, які в ній знаходяться, менша від густини атмосферного повітря. Її застосовують лише в невеликих установках, в яких температура відхідних газів висока, а опір котла невеликий (10–15 мм вод. ст.).
В установках середньої і великої видатності опір котлоагрегату становить 200300 мм. вод. ст., а температура відхідних газів – 115140° С. За таких умов димова труба не зможе створити потрібного розрідження і треба застосовувати штучну тягу.
Повітря, потрібне для горіння, подається вентилятором 2, що перемагає опір повітропідігрівника і пальників при камерному спалюванні або шару палива при шаровому спалюванні. Продукти згоряння відсмоктуються димососом 1 і видаляються в атмосферу крізь димову трубу на висоту, що визначається санітарними нормами.
У верхній частині топки підтримується лише невелике розрідження, що обчислюється кількома мм вод. ст. Таку схему називають зрівноваженою тягою.
Тягодуттьова установка може складатися з кількох вентиляторів і димососів. У димососах, на відміну від дуттьових вентиляторів, передбачається водяне охолодження підшипників, а іноді й вала, покриття кожуха всередині бронею і зносостійка конструкція ротора.
Для вибору вентиляторів і димососів визначають гідравлічні опори, що виникають під час руху повітря і газів в установці, враховуючи опір тертя, місцеві опори, запиленість газового потоку, можливі зовнішні забруднення поверхні нагріву.
Вибирають вентилятор або димосос виходячи з повного його напору h в н/м2 і годинної видатності Q в м3/год при номінальному навантаженні агрегату. Потужність на валу димососа або вентилятора визначається за формулою:
квт, (1)
де 1,1 – коефіцієнт запасу; – к. к. д. димососа, який у сучасних конструкцій дорівнює 0,750,85.
Витрата електроенергії на тягодуттьову установку становить 1,53% від видатності котельного агрегату і залежить як від к. к. д. вентиляторів і димососів, так і від способу регулювання їх видатності при зміні навантаження котельного агрегату. Таке регулювання можна здійснювати за допомогою напрямних апаратів (лопаток), що закручують потік газів перед надходженням його на лопатки вентилятора, а також гідромуфтами і зміною числа обертів електродвигуна. Останнім часом набуває поширення регулювання шиберами язикового типу, встановленими на всмоктувальному патрубку вентилятора.
Воду в паровий котел подають поршневими і відцентровими насосами. Для безпечної експлуатації котлів потрібна висока надійність роботи живильного обладнання, в зв'язку з чим установлюються резервні живильні прилади.
Поршневі насоси мають високий к. к. д., надійні в роботі, придатні для дуже високих тисків. Проте при великій видатності вони стають громіздкими і тому застосовуються, головне, в невеликих котельних установках.
У котельних установках середньої і великої видатності застосовують відцентрові насоси з електричним або паротурбінним приводом. Вони компактні і придатні для будь-якого тиску і видатності.
Сучасні котли мають невеликий водяний об'єм. Щоб забезпечити їх безперервне живлення відповідно до навантаження котла, передбачається автоматичне живлення. У нас поширені двоімпульсні регулятори живлення (системи інж. Трубкіна та ін.). Кількість подаваної води регулюється живильним клапаном за первинним імпульсом від рівня води в барабані і за вторинним – від витрати пари.
5.2 Золовидалення і золовловлювання
У невеликих котельних установках при шаровому спалюванні палива застосовують вагонеткове або механічне золовидаляння (за допомогою скребкового транспортера).
У котельних установках середньої і великої видатності широко застосовують низьконапірне гідравлічне золовидаляння. Зола і шлак змиваються струминою води і з бункерів надходять у канал, по якому рухається вода, що виносить золу за межі котельної. Потім зола транспортується до золовідвалу в закритому трубопроводі. Суміш води, шлаку і золи перекачується або багерними насосами, або гідроапаратами системи інж. Москалькова.
Багерні насоси – це відцентрові насоси, призначені для роботи на дуже забрудненій воді. В їх конструкції передбачається можливість пропуску через них кусків шлаку розміром до 100 мм.
Гідроапарат інж. Москалькова обладнаний соплом з насадкою. В апарат подається вода під тиском 40–50 бар. Вона виходить з насадки з великою швидкістю і дробить та ежектує шлак.
Багерні насоси можуть перекачувати суміш води й золи на відстань до 1 км, напорні гідроапарати – до 2 км.
У відхідних димових газах міститься сірчистий ангідрид і багато леткої золи. Щоб знизити концентрацію пилу в атмосферному повітрі, димові гази очищають у золовловниках. Крім того, встановлюють високі димові труби (у великих установках 100–150 м) для розвіювання сірчастого ангідриду і леткої золи, залишеної після золовловників, на значну відстань. Золовловлювання провадиться у золовловниках різних типів: механічних, жалюзійного і циклонного типів (циклони, батарейні циклони), мокрих (скруберні, пруткові) і в електрофільтрах.
У жалюзійних золовловниках ВТІ запилений потік газів розподіляється на паралельні струмини, напрямок руху яких різко змінюється. При цьому вловлюються крупні фракції золи. Такі золовловники використовують для захисту димососів, а також: хвостових поверхонь нагріву від швидкого зносу.
Циклони виконуються у вигляді вертикальних циліндрів з конічним днищем. Запилений газ підводиться до циліндра тангенціальне і набуває обертового руху. Золові частинки під впливом відцентрової сили відкидаються до стінок і по них спускаються в нижню частину циклона, а очищений газ виходить у трубу, розміщену в верхній частині циклона по його осі. Міра вловлювання пилу в циклоні залежить від конструкції циклона і розмірів частинок пилу і становить в середньому 6070%.
К. к. д. циклона можна збільшити до 7080%, зменшивши його діаметр. Тому останнім часом установлюють батарейні циклони, що складаються з багатьох циклонів малого діаметра (200250 мм).
Мокрі відцентрові скрубери ВТІ належать до комбінованих систем золовловлювачів. Димові гази підводяться до скруберів тангенціальне через горизонтальний патрубок. Стінки скрубера, облицьовані керамічними плитками, зрошуються водою. Частинки золи, що відкидаються до стінок відцентровою силою, стікають разом з водяною плівкою вниз і видаляються в каналізацію. Коефіцієнт вловлювання золи в мокрих скруберах становить 85 – 88%.
Пруткові золовловники ВТІ (інж. Деркачова) відрізняються від мокрих скруберів тим, що на них установлені у вхідному патрубку решітки із зрошуваних водою прутків для кращої очистки газу.
В електрофільтрах пилові частинки, діставши негативний заряд, летять до позитивно зарядженого осаджувального електрода і осаджуються на ньому, видаляючись у золовий бункер під час періодичного струшування електрода. Міра вловлювання золи в електрофільтрах становить 95%.
При виборі типу золовловників беруть до уваги не тільки міру вловлювання золи, а й вартість і складність спорудження, металомісткість і витрату енергії. При достатньо високому к. к. д. найекономічніші за вартістю очистки 1 м3 газу мокрі відцентрова скрубери.