150122 (621219), страница 4
Текст из файла (страница 4)
Пізніше (в середині 30-х років) котли Шухова реконструювали і почали випускати котли Шухова–Берліна, які мали кращі показники щодо ваги і вартості, ніж котли Шухова.
Камерні котли мають багато недоліків – велика металомісткість, непридатність для високих тисків і великих потужностей, вони дорогі та ін. Тому виробництво таких котлів давно припинено.
Кроком уперед у розвитку горизонтально-водотрубних котлів було застосування замість суцільних камер окремих секцій коробчастої або циліндричної форми. Звичайно застосовувались коробчасті секції змієвидної форми з близьким до шахового розміщення труб у пучку. У горизонтальному перерізі секції майже квадратні, їх розміри невеликі. Коробчасті і циліндричні секції можна застосовувати для підвищених і високих тисків. Секційні котли Бабкок–Вількокс Ленінградського Металічного заводу (ЛМЗ), Таганрозького котельного заводу (ТКЗ) були досить поширені у нашій країні. Помітним етапом у розвитку секційних котлів був перехід до поперечного розміщення барабана. Це дало можливість підвищити одиничну потужність агрегату, спростити його конструктивну схему і здешевіти їх виготовлення.
Секційні горизонтально-водотрубні котли з поперечним розміщенням барабана і циліндричними секціями виготовлялись у нас до війни на параметри p == 35 бар, tn.п = 425° С і D = 160200 т/год. Вони були в той час найбільшими енергетичними котлоагрегатами. секційного
Проте горизонтально-водотрубні котли навіть найкращої конструкції складні і дорогі. Тому після війни виробництво їх було припинено.
У вертикально-водотрубних котлах кип'ятильні труби приєднують безпосередньо до барабанів. Проміжних елементів (камер, секцій) у цих котлах нема, що спрощує конструктивну схему. Верхні барабани таких виконують роль камер для приєднання труб і парозбірників – сепараторів, нижні барабани – камер і грязьовиків, з яких періодичним продуванням видаляють шлаки. Замість великої кількості (десятків і сотень) дрібних люків, що встановлювали у горизонтально-водотрубних котлах, у вертикально-водотрубних котлах передбачено декілька великих лазів, (не менше ніж 300400 мм), крізь які можна проникнути в барабани. Розміщення барабанів, як правило, поперечне. Пучки кип'ятильних труб розміщують з великим нахилом до горизонту або вертикально. Труби приєднують до барабанів розвальцьовкою. Розвальцьовка їх у гніздах стінок барабанів робиться зсередини. На відміну від горизонтально-водотрубних котлів кип'ятильні трубки виконуються гнутими.
Вихідним типом сучасних вертикально-водотрубних котлів, стали котли Стерлінга з гнутими трубами, хоч у їх первісній, конструкції було багато недоліків: значна кількість барабанів. (три- і п'ятибарабанні) при малій одиничній видатності, багато рядів труб, розмішених по ходу димових газів, велика витрата металу і висока вартість котла.
Розвиток вертикально-водотрубних конструкцій характеризувався зменшенням кількості барабанів – найтяжчих і найдорожчих деталей котла – від п'яти до одного при одночасному збільшенні в десятки разів одиничної потужності котла, відмовленням від неактивно діючих, розміщених у зоні низьких температур газів, пучків котельних труб, спрощенням і поліпшенням конструктивної і циркуляційної схеми котла.
Конструкція двобарабанного агрегату ЦКТІ – ТКЗ це енергетичний агрегат середнього тиску (р = 36 бар) на той час великої видатності (D = 140 т/год). Конструктивна схема котла досить проста: верхній і нижній барабани, огріваний підйомний пучок труб, неогріваний опускний пучок і розвинена система топкових екранів, що є ефективною випарною поверхнею нагріву. За котельним пучком по ходу газів розміщені пароперегрівник, водяний економайзер і повітропідігрівник. Компоновка агрегата П-подібна.
Останнім часом будують тільки невеликі двобарабанні вертикально-водотрубні котли.
Транспортабельний (щодо можливості транспортування в складеному вигляді залізницею) котел ДКВ (двобарабанний котел вертикальний) з двома вподовж розміщеними барабанами. Котли цього типу (ДКВР) дещо модернізовані випускає тепер Бійський котельний завод. Їх виробність 2 т/год на тиск 8 бар без перегрівників і 4; 5; 6; 10; 20 т/год на тиск 13 бар і температуру перегрітої пари 350° С.
Після війни у нашій країні почали випускати потужні агрегати високого тиску однобарабанної конструкції екранного типу з розміщеним у верхній частині топки фестоном – три – або чотирирядним розрідженим пучком, утвореним розводкою труб заднього екрана. У великих котельних агрегатах, що випускаються останнім часом, у верхній частині топкової шахти встановлюють виступи («носки»), однорядні фестони і ширмові пароперегрівники у вигляді вертикальних ширм.
Для потужніших агрегатів ТП-90 виробністю 500 т/год і ТП-100 видатністю 640 т/год (для блоків 150 Мвт і 200 Мвт) на параметри пари р = 143 бар, tп. п = 570° С з проміжним перегрівом пари до 570° С ТКЗ застосовують нову Т-подібну компоновку. За такої компоновки топкова камера розміщується посередині у вихідному газоході, а конвективні елементи – у двох симетричних бічних опускних газоходах. Поряд з деякими перевагами Т-подібна компоновка разом з тим мала багато недоліків, через що пізніше їх не випускали. Схема власне котла в агрегатах ТП-90 і ТП-100 взагалі аналогічна схемі котла в агрегаті ТП-80.
У зв'язку з повним екрануванням топкових камер ( 1), зменшенням із зростанням тиску теплоти пароутворення r, підвищенням температури димових газів перед пароперегрівником, викликаним зростанням температури перегрітої пари, в агрегатах високого тиску відпала потреба в конвективних котельних пучках. У котлоагрегатах високого тиску вода перетворюється в насичену пару практично повністю в топкових екранах. При надвисоких тисках (180–190 бар) поверхня нагріву пароутворювальних екранів стає недостатньою для охолодження продуктів згоряння в топці до потрібної (щоб уникнути шлакування; температури. Тому
додатково в топці розміщують настінні екрани, які служать радіаційними пароперегрівниками.
У старих котельних конструкціях низького тиску котел був єдиною поверхнею нагріву. З ростом тиску і температури пари, застосуванням пароперегрівників і водяних економайзерів роль котла в загальному вбиранні теплоти безперервно зменшувалась. При тисках 180–190 бар основним у вбиранні теплоти і найважливішим (за умовами роботи) елементом став пароперегрівник. Помітно зросла також роль водяного економайзера. Так зростання параметрів пари істотно змінило профіль котельних агрегатів.
Агрегати з природною циркуляцією будуть для тисків до 190 бар. Це зумовлено тим, що при вищих, близьких до критичних тисках густина води і густина пари стають близькими за своїми значеннями, у зв'язку з чим дуже утруднюється організація надійної природної циркуляції і сепарації води від пари.
2.3 Прямоточні парогенератори
Принцип прямотоковості стосовно до парових котлів полягає в тому, що в елемент, який нагрівається (трубу, змійовик, ряд паралельно включених змійовиків), подається насосом стільки води, скільки в ньому утворюється пари. Найпростіший прямотоковий котел являє собою змійовик, в один кінець якого надходить вода, а з другого – виходить перегріта пара. Щоб дістати в потужних прямотокових котлах прийнятний гідравлічний опір котла, поверхні нагріву роблять у вигляді великого числа (кількох десятків) паралельних витків. Прямотокові котлоагрегати вигідно відрізняються від котлів з природною циркуляцією відсутністю важких і дорогих елементів – барабанів, системи неогрівних опускних труб і колекторів.
Прямотокові котли – єдино можливий тип котлів для вироблення пари близькокритичного і накидного тиску. Компоновка котла подібна, аналогічна до компоновки котлів з природною циркуляцією.
Живильна вода подається насосом у конвективний економайзер, звідки вона надходить у нижню радіаційну частину агрегату, виконану у вигляді стрічки, яка складається з 44 паралельно включених витків. У котлах Рамзіна застосовується горизонтальна навивка екранних труб. На фронтальній і бічних стінках топки стрічки розміщуються горизонтально, на задній – з нахилом, який дорівнює ширині стрічки. Нижня і середня частини радіаційної поверхні нагріву – радіаційний економайзер і котел.
З радіаційного котла пароводяна суміш з 20%-ним вмістом води надходить у конвективну перехідну зону, де закінчується перетворення всієї води в пару, яка перегрівається приблизно на 20–30° С. Потім пара надходить у радіаційний пароперегрівник, розміщений у верхній частині топки, і з нього – в конвективний пароперегрівник, в якому перегрівається до заданої температури 510° С.
Перехідну зону розміщують у конвективній частині, щоб уникнути частих аварій через перепал труб і для продовження компанії котла (періоду між промиваннями), бо в цій зоні на стінках труб інтенсивно відкладаються накипотвірні речовини. Прямотокові котли надкритичного тиску виконуються без винесення перехідної зони (точніше, зони максимальної теплоємності) у конвективний газохід. При цьому менше витрачається дорогої аустенітової сталі і знижується вартість котла.
Прямотокові парогенератори дуже вимогливі до якості живильної води, бо розчинені тверді речовини, що надходять з водою, не видаляються з парогенератора: частина їх осаджується на стінках труб, а частина заноситься з парою і осаджується на лопатях турбін.
Вже споруджено ще потужніші прямотокові котлоагрегати на майже ті самі параметри пари для блоків 500 і 800 Мвт видатністю відповідно 1600 і 2500 т пари на годину.
Крім котлів з природною циркуляцією і прямотокових агрегатів, існує ще багато конструкцій парових котлів з багатократною примусовою циркуляцією води, що здійснююється за допомогою спеціальних насосів, високонапірних парогенераторів з топками, які працюють під тиском, парогенераторів атомних електростанцій тощо. Проте ці конструкції не набули у нашій країні великого поширення і не мають важливого значення для великої енергетики.
3. Внутрішньокотлові процеси
3.1 Циркуляція води
Циркуляція – це безперервний рух речовини (рідини, газу) по замкненому шляху. Такий рух води – природна циркуляція – відбувається у водотрубному котлі під час його роботи внаслідок різниці густин пароводяної суміші в грійних трубах і води в ненагріваних.
На рис. III-48 показано схему найпростішого циркуляційного контуру, що складається з верхнього і нижнього барабанів, лівої грійної і правої ненагріваної труб. При роботі такого контура в усталеному стані в нагріваній трубі відбувається кипіння води, і труба на дільниці Нпар заповнена пароводяною сумішшю. При цьому утворюється рушійний напір Р, що дорівнює різниці зисків:
Нпар – Нпар сум = Нпар( – сум),
де і сум – відповідно густини води й пароводяної суміші.
Цей напір при усталеному режимі дорівнює сумі опорів, що виникають під час руху води в контурі. Вода з верхнього барабана по ненагріваній трубі надходить у нижній барабан, а з нього–в грійну трубу. Після виходу суміші з труби у верхній барабан пара йде в паровий простір, а вода знов надходить у праву опускну трубу і т.д.
Джерелом енергії, що витрачається на перекачування води під час природної циркуляції води в замкненому контурі, є робота розширення парових бульбашок, що утворюються в кип'ятильній трубі при більш високому тиску, ніж тиск у паровому просторі – верхнього барабана котла.
При нормальному режимі циркуляції від стінок теплосприймальних поверхонь нагріву, що обмиваються водою, інтенсивно відводиться теплота. Коефіцієнт тепловіддачі при цьому від стінок до води дуже великий (обчислюється тисячами і десятками тисяч вт/м2 град), тому температура стінок мало відрізняється від температури води і утворювані парові і виділювані газові бульбашки не можуть затримуватися на стінках: температура металу в різних частинах котла при змінних режимах швидко вирівнюється; від температурної нерівномірності не виникають помітні термічні напруги.
Режим циркуляції характеризується багатьма величинами: швидкістю циркуляції 0 м/сек називається швидкість води на вході в підйомну трубу, кратністю циркуляції К–відношення кількості води Gц, що надходить в грійну трубу, до кількості пари D, що утворюється в цій трубі за цей самий час, кг/кг. Ця величина зворотна ваговому паровмістові суміші на виході з кип'ятильної труби.
У котлах з природною циркуляцією кратність циркуляції більша від одиниці. У сучасних котлах значення К коливається від 6 до 12. У прямотокових котлах вода не циркулює (К = 1).
Кипіти циркулююча вода починає не у вхідному перерізі труби, а на певній відстані від входу на висоті точки закипання hт. з. Це пояснюється тим, що коли вода у верхньому барабані навіть повністю нагріта до температури кипіння, то в нижньому барабані вона буде недогрітою, бо тиск тут вищий, ніж у верхньому барабані, і воді треба надати якусь кількість теплоти для нагрівання її до температури кипіння, що й відбувається на дільниці огріваної труби висотою hт.з.