150112 (621216), страница 3

Файл №621216 150112 (Взаимодействие бета-частиц с веществом) 3 страница150112 (621216) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Е = 1,39 R0,6, при Е< 0,15 МэВ, (7)

Е = 1,92 R0,725, при 0,15 МэВ< Е< 0,8 МэВ. (8)
Е = 1,85 R + 0,245, при Е> 0,8 МэВ. (9)

В формулах (5.7) (5.9) максимальный пробег R дан в грам­мах на квадратный сантиметр (г/см2) алюминиевого фильтра, способного практически полностью поглотить бета-частицы с данной граничной энергией.

На рис.42-43 приведена кривая, связывающая пробег бета-частиц с их максимальной энергией.

Непрерывное энергетическое распределение бета-частиц, ис­пускаемых радиоактивными веществами, и рассеяние электронов при прохождении через вещество приводит к тому, что ослабле­ние пучка бета-частиц, идущих от источника к детектору, носит характер, близкий к экспоненциальному закону

(10)

где d — толщина фильтра; — коэффициент ослабления.

Экспоненциальный закон хорошо совпадает с эксперименталь­ной кривой в области средних значений толщины поглотителя. В области малых и больших значений наблюдается заметное от­ступление от экспоненциального закона (см. рис. 5б.) При изме­рениях удобно пользоваться толщиной слоя половинного погло­щения , необходимого для уменьшения вдвое начальной ин­тенсивности бета-излучения. Так как и , то

(11)

Коэффициент ослабления находят по наклону прямолинейно­го участка кривой поглощения , где угол наклона прямой).

Связь между толщиной слоя алюминия, ослабляющего из­лучение в раз, и верхней границей бета-спектра была тща­тельно исследована. На с. 94 приводится номограмма, связываю­щая толщину слоя половинного поглощения с граничной энергией — спектра.

Обратное рассеяние электронов


При попадании потока электронов на поверхность какого-либо материала часть частиц может отклониться от своего первона­чального направления на угол, превышающий 90°. Этот эффект называется обратным рассеянием электронов. Обратное рассея­ние электронов используется для решения ряда прикладных за­дач, например для определения толщины покрытий. Этот же эф­фект может быть и источником методических погрешностей. Его следует учитывать при проведении физических экспериментов с электронными пучками. Например, при вылете бета-частиц из радиоактивного источника распределение бета-частиц искажает­ся из-за их рассеяния в материале подложки, в результате че­го увеличивается число частиц, вылетающих в сторону счетчика и, следовательно, увеличивается скорость счета. Другой пример:

при измерении бета-спектров полупроводниковыми или сцинтилляционными детекторами из-за эффекта обратного рассеяния на поверхности детектора происходит обогащение низкоэнергетиче­ской части спектра.

Коэффициент обратного рассеяния

Введем величину, характеризующую явление обратного рас­сеяния коэффициент обратного рассеяния

(12)

где — число частиц, падающих нормально на поверхность ма­териала; — число частиц, рассеянных материалом на угол >90°. Коэффициент обратного рассеяния является функцией атомного номера Z отражателя, толщины отражателя d и энер­гии падающих электронов Е (а в случае непрерывного спектра бета-частиц — функцией максимальной энергии Емакс), т. е.

(13)

На рис. 32 приведена типичная экспериментальная зависи­мость q(Z) в случае отражения бета-частиц, испущенных радио­активным препаратом 32Р. Толщины материалов взяты заведомо больше, чем толщины обратного насыщения (см. далее).

Экспериментальная кривая, показанная на рис. 32, удовлетво­ряет аналитической зависимости , где В — коэф­фициент, зависящий от геометрических условий опыта, в част­ности от телесного угла окна счетчика. Здесь следует отметить, что обратно рассеянное излучение неизотропно — его максималь­ная интенсивность наблюдается в направлении, перпендикуляр­ном плоскости отражателя. Максимальная энергия и максималь­ный пробег отраженных электронов также зависит от Z. Напри­мер, в случае излучателя 32Р

= 0,247 МэВ ,

= 48 мг/см2 .

Если увеличивать толщину отражателя и измерять интенсив­ность потока обратно рассеянных электронов, то сначала q будет возрастать почти линейно (рис. 33). затем рост замедлится и да­лее достигнет некоторого предельного значения

Рис. 6. Зависимость коэффи­циента обратного рассеяния q от атомного номера 2 отражателя

Рис. 7. Зависимость коэффи­циента обратного рассеяния от толщины отражателя

Рис. 8. Зависимость коэффициента обратного рассеяния от толщины отражателя из различных металлов. Излучатель

Толщина слоя вещества, на­чиная с которой q не зависит от толщины отражателя, на­зывается толщиной насыщения обратного рассеяния dH.Эта толщина равна примерно 1/5 от максимального пробега бета-частиц данной энергии в данном веществе. Величина q зависит от атомного номера Z и слабо зависит от плотности электронов в веществе. Из рис. 8 видно, что меньше , хотя плотность электронов в платине больше, чем в свинце. Это свидетельствует о том, что рассеяние происходит в основном на атомных ядрах, а не на электронных оболочках атомов.

На рис. 10 схематически изображено обратное рассеяние бета-частиц при разных толщинах рассеивателя. Следует отметить, что обратное рассеяние бета-частиц в отличие от оптического от­ражения происходит не только на поверхности рассеивателя, но и в его глубине. На схеме действительная картина обратного рассе­яния сильно упрощена: показано рассеяние на один и тот же угол и не учтено поглощение бета-частиц веществом.

Рис. 10. Отражение бета-частиц в зависимости от толщины образца

При небольшой толщине рассеивателя большинство электронов про­ходит сквозь вещество, и лишь небольшое их число рассеивается в обратном направлении. По мере увеличения толщины число об­ратно рассеянных электронов увеличивается (б, в). Наконец, при d > dH частицы, глубоко проникшие в рассеиватель, уже не вый­дут наружу из-за поглощения в нем (г). При дальнейшем увели­чении толщины рассеивателя число вышедших из него обратно рассеянных электронов остается постоянным.

Коэффициент обратного рассеяния растет с ростом гранич­ной энергии бета-спектра до энергии 0,6 МэВ, а далее остается практически неизменным. Зависимость коэффициента обратного рассеяния q от максимальной энергии показана на рис. 11.

Явление обратного рассеяния электронов может быть исполь­зовано для решения многих прикладных задач:

а) Для определения толщины материалов. В этом случае вы­годнее применять источники мягкого бета-излучения. Зависи­мость коэффициента обратного рассеяния от толщины алюминие­вого отражателя для разных бета-источников показана на рис. 12.

б) Для определения толщины покрытий. Эффект обратного рассеяния позволяет измерять толщины покрытия без разруше­ния изделий и покрытий. Не разрушает изделие микрометриче­ский метод, но он требует жесткого постоянства толщины основания, а также магнитный, но в этом случае покрытие должно об­ладать магнитными свойствами. Оптическими методами можно определить толщины только прозрачных покрытий. Химический метод связан с разрушением изделия и его точность не превы­шает 15%. В случае применения эффекта обратного рассеяния атомные номера вещества покрытия и подложки должны различаться, по крайней мере, на две единицы.


Рис.11. Зависимость коэффициента обратного рассеяния от максимальной энергии бета-спектра

Эффект обратного рассеяния позволяет измерять толщины никелевых и хромовых покрытий, покрытий на проволоке и бу­маге, светочувствительных слоев и т. д., составов на пленке, лако­вых покрытий на металлах, покрытий из драгоценных металлов. При этом все измерения делают бесконтактно, без разрушения изделий и непрерывно.

Обратно-рассеянное бета-излучение чувствительно к соста­ву раствора ионов с высокими атомными номерами (рис. 12). Возможно измерение концентрации одного металла в сплаве с другим. Здесь также необходимо иметь набор эталонов с раз­личной концентрацией компонентов. Поток обратно-рассеянных бета-частиц от смеси веществ и равен

(14)

где и — весовые концентрации компонентов, + =1.

ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ЧАСТИЦ СО СРЕДОЙ

Ионизационное торможение заряженных частиц. При электро­магнитном взаимодействии быстрых заряженных частиц с элект­ронами вещества последние переходят в возбужденное состояние; когда они остаются внутри атома, происходит возбуждение атома, и спектр этих состояний имеет дискретный характер; в тех слу­чаях, когда электроны вырываются из атома, их энергия может иметь любые значения, а атом при этом ионизуется. Увеличение энергии электрона происходит за счет кинетической энергии па­дающей частицы. В обоих случаях для краткости принято гово­рить, что энергия летящей частицы убывает вследствие ионизаци­онных потерь.

Рассмотрим взаимодействие тяжелой заряженной частицы с электроном. Такая частица ничтожно отклоняется со своего прямо­линейного пути и этим отклонением можно пренебречь. Допустим, что частица с зарядом Ze, массой М и скоростью v пролетает на расстоянии b от электрона, где b — прицельный параметр, или па­раметр удара (рис. 13). Взаимодействие частицы с электроном приведет к тому, что электрон получит импульс в направлении, перпендикулярном к линии полета частицы

где F – электростатическая сила и - ее составляющая нормальная к линии полета, а t – время полета


Рис. 13. Взаимодействие заряженной частицы с электроном атома

Рис.14. К расчету ионизационных потерь

Импульс же, полученный в продольном направлении , как легко видеть, равен нулю, так как продольная компонента силы на пути до точки наибольшего сближения и после нее имеет противоположные знаки.

Если считать, что взаимодействие существенно только на не­котором отрезке пути 2b,то время пролета определится как .Кулоновская сила на этом участке по порядку величины ,поэтому импульс, полученный электроном, может быть записан как

(15)

а переданная электрону энергия

(16)

Эту энергию в среднем и теряет заряженная частица.

Чтобы учесть все электроны с данным параметром удара, рассмотрим кольцевой цилиндр, ось которого совпадает с траекто­рией частицы, а боковая поверхность проходит через точку, где находится электрон (рис. 14).

Если число электронов в 1 вещества равно , то между стенками цилиндров радиусов b и b+db, т. е. в объеме 2πbdb (единичной длины), будет находиться 2πbdb электронов. В результате взаимодействия с ними заряженная частица на длине потеряет энергию

(17)

Для получения полных ионизационных потерь нужно проин­тегрировать (16) по всем возможным значениям параметра удара от минимального до максимального, что дает

Характеристики

Тип файла
Документ
Размер
7,54 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее