144162 (620424), страница 2

Файл №620424 144162 (Одноэтажное промышленное здание) 2 страница144162 (620424) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

кПа

Рис. 4 К определению эквивалентного нормативного значения ветрового давления.

Для определения ветрового давления с учетом габаритов здания находим по прил. 4 [7] аэродинамические коэффициенты се = 0,8 и се3 = – 0,4; тогда с учетом коэффициента надежности по нагрузке, γf = 1,4 и шага колонн 6 м получим:

расчетную равномерно распределенную нагрузку на колонну рамы с наветренной стороны w1 = 0,177·0,8·1,4·6·1= 1,18944 кН/м;

то же, с подветренной стороны w2 = 0,177·0,4·1,4·6·6 = 0,5947 кН/м;

расчетная сосредоточенная ветровая нагрузка от давления ветра на ограждающие конструкции выше отметки 12 м.:

·γf··L·γn=

= (0,207+0,225)/2(15,8 – 12)·(0,8+0,4)·1,4·6·1 = 6,706 кН.

Расчетная схема поперечной рамы с указанием мест приложения всех нагрузок приведена на рис.5. При определении эксцентриситета опорных давлений стропильных конструкций следует принимать расстояния сил до разбивочных осей колонн в соответствии с их расчетными пролетами по приложениям VI – X.

Рис. 5 Расчетная схема поперечной рамы.

Проектирование стропильной конструкции.

Сегментная раскосная ферма:

Решение. Воспользуемся результатами автоматизированного статического расчета безраскосной фермы марки 2ФС24 для III снегового района.

Для анализа напряженного состояния элементов фермы построим эпюры усилий N, М и Q от суммарного действия постоянной и снеговой нагрузок.

Нормативные и расчетные характеристики тяжелого бетона заданного класса В35, твердеющего в условиях тепловой обработки при атмосферном давлении, эксплуатируемого в окружающей среде влажностью 80% (уb2 = 1);

Rbn= Rb,ser = 25,5 МПа; Rb= 1·19,5= 19,5 МПа;

Rbt,n= Rbt,ser = 1,3 МПа; Еь = 31000 МПа;

Rbp = 20 МПа (см. табл. 2.3).

Расчетные характеристики ненапрягаемой арматуры: продольной класса A-III, Rs = Rsc = 365 МПа; Es = 200 000 МПа; поперечной класса А-I, Rsw = 175 МПа; Es = 210 000 Мпа.

Нормативные и расчетные характеристики напрягаемой арматуры класса A-V:

Rsn = Rs,ser = 785 МПа; Rs = 680 МПа; Es = 190 000 МПа.

Назначаем величину предварительного напряжения арматуры в нижнем поясе фермы Sp= 700 МПа. Способ натяжения арматуры – механический на упоры.

Так как σsp+р = 700+35=735МПаRs,ser =785 МПа и σsp – р = 700–35=6650,3·Rs,ser=235,5 МПа, то требования условия (1) [2] удовлетворяются.

Расчет элементов нижнего пояса фермы. Согласно эпюрам усилий N и М, наиболее неблагоприятное сочетание усилий имеем в сечении номер 10 при N= 480,44 кН и М = 1,78 кН·м.

Поскольку в предельном состоянии влияние изгибающего момента будет погашено неупругими деформациями арматуры, то расчет прочности выполняем для случая центрального растяжения.

Площадь сечения растянутой арматуры определяем по формуле (137) [4], принимая η=1,15: As,tot= N/(η·Rs) = 480,44·103/1,15·680= 614,974 мм2.

Принимаем 4 ø 16 A-V(Asp= Asp=804 мм2).

Определим усилия для расчета трещиностойкости нижнего пояса фермы путем деления значений усилий от расчетных нагрузок на вычисленный ЭВМ средний коэффициент надежности по нагрузке γfm= 1,206. Для сечения 10 получим усилия от действия полной (постоянной и снеговой) нагрузки:

N= N¯/ γfm = 480,44/1,206 = 398,3748 кН;

М= M¯/ γfm = 1,78/1,206 = 1,476 кН·м;

то же, от длительной (постоянной) нагрузки:

Nl = [Ng + (N¯ – Ng)kl] / γfm= [346,35+(480,44–346,35)0,3] /1,206 = 320,5448 кН;

Мl =[Мg + (М ¯– Мg)kl] / γfm= 1,8574 кН·м.

Согласно табл. 1, б [4] нижний пояс фермы должен удовлетворять 3-й категории требований по трещиностойкости, т. е. допускается непродолжительное раскрытие трещин до 0,3 мм и продолжительное шириной до 0,2 мм.

Геометрические характеристики приведенного сечения вычисляем по формулам (11)–(13) [4] и (168)—(175) [5].

Площадь приведенного сечения:

Ared=A+α·Asp,tot= 250·200+6,129·804 = 54927 мм2

где α = Es/Eb = 190 000/31 000 = 6,129

Момент инерции приведенного сечения

Ired=I+∑α·Asp·y2sp= 250·2003/12+6,129·402·552+6,129·402·552=1,8157·108 мм4

где уsp = h/2 — ар = 250/2 – 60 = 55мм.

Момент сопротивления приведенного сечения:

Wred = Ired/y0 = 1,8157·108/100 =1,8157 · 106 мм3, где у0 = h/2 = 250/2 = 125 мм.

Упругопластический момент сопротивления сечения:

Wpl = γ·Wred = 1,75·1,8175·106 = 3,1775 ·106 мм3, где v = 1,75

принят по табл. 38 [5].

Определим первые потери предварительного напряжения арматуры по поз. 1– 6 табл. 5 [2] для механического способа натяжения арматуры на упоры.

Потери от релаксации напряжений в арматуре σ1 = 0,1·σsр–20 = 0,1·700–20 = 50 МПа,

Потери от температурного перепада σ2 = 1,25·Δt = 1,25·65 =81,25 МПа.

Потери от деформации анкеров, расположенных у натяжных устройств

σ3 = (Δℓ/ℓ)Es= =(3,65/19 000)190 000 = 36,5 МПа, где Δℓ = 1,25 + 0,15d = 1,25 + 0,15-16 = 3,65 мм и ℓ = 18 + 1 = 19 м = 19 000 мм.

Потери σ4 – σ6 равны нулю.

Напряжения в арматуре с учетом потерь по поз. 1 – 6 и соответственно усилие обжатия будут равны:

σsр1 = σsр – σ1 – σ2 – σ3 = 700–50–81,25–36,5 = 532,25 МПа;

P1 = σsр1·Аsр,tot= 532,25·804= 427,929 • 103 Н = 427,929 кН.

Определим потери от быстро натекающей ползучести бетона:

σbp=PI/Ared= 427,929·103/54927 = 7,7909 МПа;

α= 0,25+0,025·R = 0,25 + 0,025·20 = 0,75<0,8,

принимаем α=0,75;

поскольку

σbp /Rbp= 7.7909/20 = 0,389<α, то σ6 = 0,85·40· σbp /Rbp = 0,85·40·0.389 = 13.244 МПа.

Таким образом, первые потери и соответствующие напряжения в напрягаемой арматуре будут, равны;

σlosl = σ1+ σ2 + σ3+ σ6 = 180.9945 МПа; σspl = σsp - σlosl = 700–180.9945 = 519.0055 МПа.

Усилие обжатия с учетом первых потерь и соответствующие напряжения в бетоне составят:

Рl = σsр1·Аsр,tot = 519.0055·804=417.28·103Н = 417.28 кН; σbp=PI/Ared= 417,28·103/54927 = 7,597 МПа.

Поскольку

σbp /Rbp= 7,597/20=0,3798<0,95,

то требования табл. 7 [2] удовлетворяются.

Определим вторые потери предварительного напряжения арматуры по поз. 8 и 9 табл. 5 [2].

Потери от усадки бетона σ8 = 35 МПа.

Потери от ползучести бетона при σbp /Rbp= 0,318< 0,75 будут равны:

σ9 = 150 • 0,85· σbp /Rbp= 150·0,85·0,3798 = 48,4308 МПа.

Таким образом, вторые потери составят

σlos2 = σ8+ σ9 = 35+48,4308=83,4308 МПа,

а полные будут равны:

σlos = σlos1+ σlos2 = 180,9945+83,4308=264,4253 МПа>100 МПа.

Вычислим напряжения в напрягаемой арматуре с учетом полных потерь и соответствующее усилие обжатия:

σsp2 = σsp – σlos = 700–264,4253=435,5747 МПа;

Р2 = σsр2·Аsр,tot = 435,5747·804=350,202·103Н = 350,202 кН.

Проверку образования трещин выполняем по формулам п. 4.5 [2] для выяснения необходимости расчета по ширине раскрытия трещин.

Определим расстояние r от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от максимально растянутой внешней нагрузкой грани сечения. Поскольку N=398,3748 кН > Р2 = 350,202 кН, то величину г вычисляем по формуле:

r = Wpl /[A + 2 α ·(Asp + A'sp)] = 3,1775·106/[250·200+2·6,129·(804)] = 53,0862 мм

Тогда Мrp2ор2+г) = 350,202·103·(0+53,0862) = 18,5909·106 Н·мм = 18,5909 кН·м; соответственно Мcrc = RbtserWpl + Мrp = 1,95·3,1775·106 + 18,5909·106 =59,2823·106Н·мм =59,2823 кН·м.

Момент внешней продольной силы Mr = N(ео + г) = 22,6242 кН·м,

Поскольку Мcrc = 59,2823 кН·м >Mr = 22,6242 кН·м, то трещины не образуются и расчет по раскрытию трещин не требуется.

Расчет элементов верхнего пояса фермы. В соответствии с эпюрами усилий N и М,

наиболее опасным в верхнем поясе фермы будет сечение 2 с максимальным значением продольной силы. Для сечения 2 имеем усилия от расчетных нагрузок:

N = 492,69 кН; М =2,53 кН·м; NL = 355,18 кН; МL = 1,82 кН·м.

Расчетная длина в плоскости фермы, согласно табл. 33 [2], при эксцентриситете

е0= M/N = 3,7050 мм h/8 = 22,5 мм будет равна ℓ0= 0,9·ℓ= 0,9·3,224 = 2,9016 м.

Находим случайный эксцентриситет еа>h/30 = 180/30 = 6 мм; еа ≥ 10 мм; принимаем еа = 10 мм.

Так как ℓ0 = 2,9016< 20h = 3.6, то расчет прочности ведем как для сжатого элемента.

Тогда требуемая площадь сечения симметричной арматуры будет равна:

Принимаем конструктивно 4Ø10 A-III, (As=A's=314мм2).

При этом μ =(As+A's)/(b·h)=2·226/(300·300)=0,5 0,2 (при ℓ0/h > 10).

Попречную арматуру конструируем в соответствии с требованиями п.5.22[2] из арматуры класса Вр-I диаметром 4 мм, устанавливаемую с шагом s=200 мм, что не менее 20d=20·12=240 мм и не более 500 мм.

Расчет элементов решетки фермы. К элементам решетки относятся стойки и раскосы фермы, имеющие все одинаковые размеры поперечного сечения b=150 мм, h=120 мм для фермы марки 2ФС18.

Максимальные усилия для подбора арматуры в элементах решетки определяются из таблицы результатов статического расчета фермы с учетом четырех возможных схем нагружения снеговой нагрузкой.

Раскос 13-14, подвергающийся растяжению с максимальным усилием N=39,2 кН. Продольная ненапрягаемая арматура класса А-III, Rs=Rsc=365 Мпа. Требуемая площадь сечения рабочей арматуры по условию прочности составит Аs= N/Rs=39,2·103/365=107,3972кН. Принимаем 4 Ø 8 А-III (Аs=201 мм2).

Аналогично конструктивно армируем остальные сжатые элементы решетки, т.к. усилия в них меньше, чем в раскосе 13-14.

Стойка 11-12, подвергающийся растяжению с максимальным усилием N=-15,35 кН, Nl=-8.7 кН. Расчетная длинна l0=0,8·h=1,76·2,2=1,76 м.Так как l0/h=1,76/0,12=14,6667<20, то прогибов не образуется и η=1.

Принимаем симметричное армирование 4 Ø 10 А-III (Аs=314 мм2).

Расчет и конструирование опорного узла фермы.

Расчет выполняем в соответствии с рекомендациями [10]. Усилие в нижнем поясе в крайней панели N = 438,16 кН, а опорная реакция Q = Q мах = 225,73кН.

Необходимую длину зоны передачи напряжений для продольной рабочей Ø 16 мм класса А–III находим по требованиям п. 2.29 [2]:

lp = (ωp·σsp·Rbtp)d = (0,25·700/20 + 10)16 = 300 мм, где σsp = 700 МПа

(большее из значений Rs и σsp), a ωр =0,25 и λр = 10 (см. табл. 28 [2]).

Выполняем расчет на заанкеривание продольной арматуры при разрушении по возможному наклонному сечению ABC, состоящему из участка АВ c наклоном под углом 45° к горизонтали и участка ВС с наклоном под углом 27,6 ° к горизонтали (см. приложение VIII).

Координаты точки В будут равны: у = 105 мм, х = 300 + 105 = 405 мм.

Ряды напрягаемой арматуры, считая снизу, пересекают линию ABC при у, равном: для 1-го ряда – 60 мм, 1Х = 300 + 40 = 345 мм; для 2-го ряда — 300 мм (пересечение с линией ВС), 1Х = 455 мм. Соответственно значения коэффициента γsp = lx/lp (см. табл. 24 [2]) для рядов напрягаемой арматуры составят:

для 1-го ряда — 345/300 = 1,15; для 2-го ряда — 455/300 = 1,5167.

Усилие, воспринимаемое напрягаемой арматурой в сечении ABC:

Nsp = Rs·∑γspi·Aspi = 680(1,15 · 402 + 1,5167 · 402) = 728,9691·103H = 728,9691 кН.

Из формулы (1) [10] находим усилие, которое должно быть воспринято ненапрягаемой арматурой при вертикальных поперечных стержнях:

Ns=N–Nsp=438,16–728,9691= –290,8091 кН.

Требуемое количество продольной ненапрягаемой арматуры заданного класса принимаем конструктивно 4 Ø 10 A-III, As = 314 мм2 (Rs = 365 МПа), что более Аsmin=0,15·N/Rs= 0,15·438,16·103/365 = 180,0657 мм2.

Напрягаемую арматуру располагаем в два ряда по высоте: 1-й ряд – у = 85 мм, пересечение с линией АВ при х = 385 мм, lх = 385 — 20 = 365 мм; 2-й ряд – у = 115 мм, пересечение с линией ВС, при х = 429 мм, 1x= 409 мм.

В соответствии с п. 5.14 [2] определяем требуемую длину анке-ровки ненапрягаемой продольной арматуры в сжатом от опорной реакции бетоне. По табл. 37 [2] находим: ωаn = 0,5; ∆λan = 8; λan = 12 и lan,min=200мм.

По формуле (186) [2] получим:

lan = (ωan·Rs/Rb+∆λan)·d=(0,5-365/19,5+8)10=173,5897мм >λan·d = 12·10 = 120 мм

и > lan,min=200 мм. Принимаем lan= 200 мм. Тогда значение коэффициента условий работы ненапрягаемой арматуры γs5 = lx/ly при lx > lan будет равно γs5 =1.

Следовательно, усилие, воспринимаемое ненапрягаемой продольной арматурой, составит. Ns=Rs·∑γs5i·Aspi =365(1·157+1·157)=114,61·103Н=114,61 кН, т. е. принятое количество ненапрягаемой арматуры достаточно для выполнения условия прочности на заанкеривание.

Из условия прочности на действие изгибающего момента в сечении АВ, поперечная арматура не требуется и устанавливается конструктивно.

Принимаем вертикальные хомуты минимального диаметра 6 мм класса A-I с рекомендуемым шагом s = 100 мм.

Определяем минимальное количество продольной арматуры у верхней грани опорного узла в соответствии с п. 6.2 [10]: As = 0,0005A=0,0005-250-780= 97,5мм2. Принимаем 2 Ø 10 A-III, As= 157мм2.

1.3 Оптимизация стропильной конструкции

Методические указания. Программная система АОС-ЖБК [11] позволяет выполнить оптимизацию проектируемой стропильной конструкции по критерию относительной стоимости стали и бетона, при этом за единицу автоматически принимается относительная стоимость рассчитанного студентом варианта по индивидуальному заданию.

Варьируемыми параметрами могут быть: тип стропильной конструкции и соответствующие типы опалубочных форм, классы бетона, классы ненапрягаемой и напрягаемой арматуры.

1.4 Проектирование колонны:

Таблица 3. Определение основных сочетаний расчетных усилий в сечении 3-3 колонны по оси Б.

Загружения и усилия

Расчетное сочетание усилий (силы – в кН; моменты – в кН/м)

N Mmax

N Mmin

Nmax Mmax (Mmin)

Nmin Mmax (Mmin)

загруженния

1+(10+18)*0,85

1+(6+12)*0,7+14*0,85

1+2+(6+12)*0,7+

+14*0,85

1+(6+12)*0,7+14*0,85

1

У

С

И

Л

И

Я

N

248,89

248,89

324,49

248,89

M

47,0835

-97,289

-90,059

-90,059

N1

248,89

248,89

324,49

324,49

M1

11,29

11,29

18,52

18,52

Nsh

0

0

0

0

Msh

35,7935

-108,58

-108,58

-108,58

загруженния

1+(2+(10+18)*0,85+22)*1

1+((6+14)*0,85+23)*0,9

1+(2+(6+14)*0,85+23)*0,9

1+((6+14)*0,85+23)*0,9

2

У

С

И

Л

И

Я

N

316,93

248,89

316,93

248,89

M

52,4951

-94,09

-87,58

-94,09

N1

248,89

248,89

248,89

248,89

M1

11,29

11,29

11,29

11,29

Nsh

68,04

0

68,04

0

Msh

41,2051

-105,38

-98,87

-105,38

Размеры сечения надкрановой части колонны b=400 мм, h=600 мм. Назначаем для продольной арматуры а=а'=40 мм, тогда h0=h–а=600–40=560 мм.

Определим сначала площадь сечения продольной арматуры со стороны менее растянутой грани (справа) при условии симметричного армирования от действия расчетных усилий в сочетании N и Мmin :

N = 248,89 кН, М = | Mmin | = 97,289 кН·м;

Nl= 248,89 кН, Мl = 11,29; Nsh = 0; Мsh = 108,58 кН·м.

Поскольку имеются нагрузки непродолжительного действия, то вычисляем коэффициент условий работы бетона γbl согласно п. 3.1 [3]. Для этого находим: момент от действия постоянных, длительных и кратковременных нагрузок (кроме нагрузок непродолжительного действия) относительно оси, проходящей через наиболее растянутый (или менее сжатый) стержень арматуры:

MI=(N – Nsh)(h0 - а')/2 + (М – Msh) = (248,89-0) (0,56-0,04) / 2+ (97,289-108,581)= 53,42 кНм;

то же, от всех нагрузок

MII=N(h0 –а')/2+М= 248,89(0,56–0,04) / 2 + 97,289 = 162,0004 кНм.

Тогда при γb2 =0,9 получим γbl = 0,9МПI = 0,9·162 /53,42= 2,73>1,1.

Принимаем уы = 1,1 и Rb = 1,1·19,5 = 21,45 МПа.

Расчетная длина подкрановой части колонны при учете нагрузок от кранов равна l0= 12,375 м (см. табл.1). Так как l0/h=12,375/0,6=6,5>4, то расчет производим с учетом прогиба элемента, вычисляя Ncr по формуле (93) [3]. Для этого находим е0 = M/N=97,28·106/(248,89·103) =390,89 мм > еа = h/30=600/30=20 мм; так как е0/h= 390,9/700=0,55 > δe,min=0,5–0,01·l0/h–0,01Rb=0,2205, принимаем δe =e0/h=0,55.

Поскольку изгибающие моменты от полной нагрузки и от постоянных и длительных нагрузок имеют разные знаки и е0=390,89 мм>0,1h=70 мм, то принимаем φl=1.

С учетом напряженного состояния сечения (малые эксцентриситеты при больших размерах сечения) возьмем для первого приближения коэффициент армирования μ=0,004, тогда при а=Еsb=190 000/32 500=5,85 получим:

Коэффициент η будет равен: η= 1/(1–N/ Ncr)=l / (1–248,89/30745)=1,008.

Вычислим значение эксцентриситета с учетом прогиба элемента по формуле:

е=е0η+(hо—а'}/2= 390,8· 1,008+ (560—40)/2=653,12 мм.

Необходимое продольное армирование определим согласно п. 3.62 [3]. По табл. 18 [3] находим ξR=0,519 и αR=0,384.

Вычислим значения коэффициентов:

αn=N/(Rbbh0)=248,89·103/(21,45 • 400 ×560)=0,0518;

αm1=Ne/(R bh02)=248,89·103 • 653/(21,45 • 400 • 5602)= 0,0604;

б=а'/h0= 40/560=0,0714.

Так как αn < ξR, значения A=A'S определяем по формуле

Поскольку по расчету арматура не требуется, то сечение ее назначаем в соответствии с конструктивными требованиями табл. 47 [3]: A=A'S= 0,002bh0=0,002·400·560=448 мм2.

Тогда получим (A=(As+A's)/(M)=(448+448)/(400·600)=0,0044, что незначительно отличается от предварительно принятого μ=0,004, следовательно ,расчет можно не уточнять, а окончательно принять Ssn=As=448 мм2.

Определим площадь сечения продольной арматуры со стороны наиболее растянутой грани (слева) для несимметричного армирования с учетом, что со стороны сжатой грани (справа) должно удовлетворяться условие A's≥AS,fact =Asn=448 мм2 (по предыдущему расчету). В этом случае расчетные усилия возьмем из сочетания N и Мmin .

Вычислим коэффициент γbl : , MI=(356,75–75,6)(0,56–0,04)/2+(17,22-6,18)= 62,1кНм; MII=356,75(0,56–0,04)/2+17,22= 110 кНм; γb2 =1 получим γbl = 0,9МПI=0,9·110/62,1= 1,6>1,1. Принимаем уы = 1,1 и Rb = 1,1·19,8 = 21,78 МПа. кН • м.

η=l/(l–356,75/4958,4)=1,08.

Вычисляем е0 = М / N=17,22·106/(356,75·103)=48,26 мм, тогда e=e0η+(h0-a')/2=48,26· ·1,08+(566—40)/2==312,1 мм.

Площади сечения сжатой и растянутой арматуры определяем согласно п. 3.66 [3].

Тогда получим:

Поскольку по расчету арматура не требуется, то сечение ее назначаем в соответствии с конструктивными требованиями табл. 47 [3]: A=A'S= 0,002bh0=0,002·400·560=448 мм2.

Конструирование продольной и поперечной арматуры колонны с расчётом подкрановой консоли: анализируя результаты расчета всех опасных сечений колонны, целесообразно в надкрановой части принять симметричную продольную арматуру по 2 ø 18 А-III (ASл=Asn=509 мм2>448 мм2).

В подкрановой части колонны наиболее опасным будет сечение 4-4, 5-5, 6-6, для которого у левой грани принимаем продольную арматуру из 2ø20 А-III(ASл=Asn=628мм2>608 мм2).

Поперечную арматуру в надкрановой и подкрановой частях колонны по условию свариваемости принимаем диаметром 5 мм класса Вр-I, которая должна устанавливаться в сварных каркасах с шагом 300 мм (не более 20d=20·18=360 мм).

Выполняем проверку принятого продольного армирования на прочность в плоскости, перпендикулярной раме, при действии максимальных продольных сил.

Для над крановой части колонны имеем: N=324,49 кН; N,=248,89 кН; Nsh=0. Поскольку нет нагрузок непродолжительного действия, то расчетные сопротивления бетона принимаем с γb2=1 (при заданной влажности 80 %). Размеры сечения: b=600мм, h=400 мм. Назначая а=а'=40 мм, получим h0=h-а=400-40=360 мм. Расчетная длина над крановой части колонны l0=5,85 м (см. табл. 2.1). Так как /0/h=5850/400=14,625>4, то необходимо учесть влияние прогиба элемента на его прочность.

Находим значение случайного эксцентриситета:

еа>h/30=400/30=13,33мм; еа>H2/600=3900/600=6,5мм; еа>10мм. принимаем еа=13,33мм. Тогда соответствующие значения изгибающих моментов будут равны:

М=N·еа=324,49·103·13,33=4,325·106Нмм= 4,325 кНм;

Мl = Nl·eа=248,89·103·13,33=3,12·106 Нмм=3,12 кНм.

Для определения Ncr вычисляем:

Характеристики

Тип файла
Документ
Размер
10,2 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6529
Авторов
на СтудИзбе
301
Средний доход
с одного платного файла
Обучение Подробнее