113567 (616870), страница 3
Текст из файла (страница 3)
Задача № 1 . Вывести формулу вещества с молярной массой 123 г/моль, если состав его , выраженный в массовых долях , следующий : углерод 58,5 %, водород 4,1 %, азот 11,4 %, кислород 26,0 %
Решение: Формулу соединения условно можно записать Cx H y Nz Ot .
Искомые величины – числа атомов в молекуле ( индексы в данной формуле- x, y, z, t).
Массовые доли химических элементов в данном веществе можно выразить:
W (N) =
W (H) =
W (O) =
Составим уравнения, учитывая, что произведение молярной массы соединения на массовую долю данного элемента, входящего в его состав, равно молярной массе элемента, умноженной на его индекс в формуле соединения.
Решим каждое уравнение :
М ( Cx Hy Nz Ot ) ∙ w ( C ) = x∙ M ( C ) 123∙0,585 = 12 х , х = 6
М ( Cx Hy Nz Ot ) ∙w ( H ) = y ∙ M ( H ) 123 ∙ 0. 041 = уу = 5
М ( Cx Hy Nz Ot ) ∙ w (N ) = z ∙ M ( N ) 123 ∙ 0, 114 = 14 z z = 1
M ( Cx Hy Nz Ot ) ∙ w ( O ) = t∙ M (O) 123∙ 0,26 = 16t, t=2
Ответ: формула соединения
(нитробензол).
Задача № 2 . В кристаллогидрате сульфата марганца (II) массовая доля марганца равна
0, 268. Определить количество вещества воды, приходящееся на 1 моль кристаллогидрата. Написать формулу соли.
Решение: Рассматриваемым объектом является 1 моль кристаллогидрата сульфата марганца (II). Его формулу условно запишем
, где n- искомая величина.
Составим уравнение, учитывая, что массовая доля марганца в кристаллогидрате равна отношению молярных масс марганца и данного кристаллогидрата:
W (Mn) =
Подставляя в уравнение вместо символов их числовые значения, получим: 0,268 =
. Решая уравнение, найдём n = 3 .
Ответ: 1 моль кристаллогидрата сульфата марганца ( II ) содержит 3 моль воды. Формула соли -
.
Задача № 3 . При полном сгорании 3,1 г органического вещества (М= 93
) образовалось 8, 8 г оксида углерода ( IV) , 2,1 г воды и выделилось 0,47 г азота. Написать формулу вещества.
Решение: В общем виде соединение можно представить формулой
, где х , у, z и t- искомые величины.
Составим уравнения, учитывая следующее:
-
масса углерода в сгоревшем веществе и в образовавшемся оксиде углерода
( IV) равны:
m ( Cx Hy Nz Ot )
или 3,1
88
, откуда х=6;
-
массы водорода в сгоревшем веществе и в образовавшейся воде равны:
m (CxHyNzOt)
или 3,1
, откуда у=7;
-
масса азота в 3,1 г соединения равна 0,47 г:
m (
)
, 3,1
,
откуда z=1;
-
молярная масса соединения равна сумме молярных масс каждого элемента, умноженных на соответствующие индексы в формуле:
М (
) = х
, или
93=6
, откуда t =0.
Ответ: формула соединения
(анилин).
Задача № 4 . Массовая доля серебра в соли предельной одноосновной органической кислоты составляет 70,59 %. Написать молекулярную формулу этой кислоты, если известно , что она состоит из углерода , водорода и кислорода .
Решение: Запишем химические формулы кислот и её соли в условном виде:
и Аg
..Индексы х, у и z-искомые величины.
Выражая молярную массу соли серебра через молярные массы составляющих её атомов, получим:
М (Аg
) =
х
Составим уравнение, учитывая, что произведение молярной массы соли на массовую долю в ней серебра равно молярной массе серебра:
М (Аg
)
(107+12х+у+16z)
откуда 12х + у + 16z = 46.
По условию задачи одноосновная предельная органическая кислота имеет общую формулу
, или,
. Отсюда у =2х , z = 2.
Искомые числа х и у одновременно удовлетворяют двум уравнениям:
12х +у +16
2х = у
Решая систему уравнений, получим х = 1, у = 2. Следовательно, формула кислоты -
, или НСООН.
Ответ: Формула кислоты - НСООН.
Задача № 5 . После полного термического разложения 2,0 г смеси карбонатов кальция и стронция получили 1,23 г смеси оксидов этих металлов. Оксид углерода (IV) улетучился. Вычислить массу карбоната стронция в исходной смеси.
Решение: Запишем уравнение реакции:
x y
SrC
→ SrO + C
(I)
148 г104 г
2-х 1,23-у
CaC
→ CaO + C
(II)
100 г 56 г
Искомую величину- массу карбоната стронция в смеси обозначим через х: m (SrC
= x. Тогда масса карбоната кальция будет равна m (CaC
) = 2-x, а масса выделившегося оксида углерода (IV) составит m (C
) = (2-1,23) г = 0,77 г.
Составим уравнение, учитывая, что масса углерода в исходной смеси карбонатов металлов равна массе углерода в выделившемся оксиде углерода (IV):
m ( CaC
)
Подставляя числовые значения, получим:
(2-х)
откуда х=0,75 .
Ответ: масса карбоната стронция равна 0,75 г .
Задача № 6 . Рассчитать массовые доли компонентов смеси , состоящей из гидрата карбоната аммония , карбоната калия и гидрофосфата аммония, если известно , что из 38,4 г этой смеси получили 8,8 г углекислого газа и 6,8 г аммиака.
Решение:
М (
) = 114 г/моль
М (
) = 138 г/моль
М (
) = 132 г/моль
Пусть в смеси х моль
, у моль
и z моль
, тогда
114х + 138у + 132z = 38,4
Из х моль гидрата карбоната аммония можно получить 2х моль аммиака и
х моль углекислого газа:
х2х х
→ 2
Аналогично,
у у z 2z
→
→ 2
n (
) = 8,8/44 = 0,2 моль х + у = 0,2
n (
) = 6,8/ 17= 0,4 моль 2х+2z =0,4
Решая систему уравнений
114х + 138у + 132z = 38,4
х + у = 0,2
2х+2z =0,4
находим х = у = z = 0,1 моль
w (
) =
w (
) =
w ((NH4)HPO4 =
Ответ: w (
) = 29,7 % , w(
) = 35,9 % ,
w (
) = 34,4 %.
2) Задачи на газовые законы. Определение количественных отношений в газах.
Расчёты масс, количеств веществ и объёмов газов обычно проводят с помощью алгебраических уравнений, как правило, на основе закона Авогадро. Рассмотрим некоторые особенности составления таких уравнений.
Иногда в задачах требуется произвести вычисления с газами, при смешении которых не происходит химического взаимодействия, а образуется смесь исходных газов. В таких случаях при составлении алгебраических уравнений учитывают, что масса газовой смеси равна сумме масс газов смеси. В уравнении массу каждого газа, а также смеси представляют как произведение количества вещества газа на его молярную массу: m = n* M. В отдельных задачах при составлении уравнений принимают во внимание , что количество вещества в газовой смеси равно сумме количеств веществ газов, которые были смешаны.
Если в условии задачи задана относительная плотность D некоторого газа, имеющего молярную массу М ( х ), по другому газу, имеющего молярную массу М ( а ), то можно использовать существующую зависимость между этими величинами: D = М ( х ) / М ( а ) – выражать молярную массу газа М ( х ) в виде произведения
.
Во многих задачах рассматриваются газы, которые при смешении реагируют между собой, образуя газообразные продукты реакции. В таких случаях при составлении алгебраических уравнений учитывают, что объёмы участвующих в реакции газов относятся как коэффициенты перед формулами соединений в уравнении химической реакции. Причём объёмы газов должны быть взяты при одинаковой температуре и давлении. В алгебраических уравнениях отношение объёмов реагирующих газов иногда удобно заменять отношением количеств веществ газов.
В процессе решения задач, касающихся газов, иногда полезно использовать информацию, которую можно представить в виде неравенств. Последние иногда непосредственно следуют из условия задачи. Однако в ряде случаев их можно составлять на основе известных свойств газов. Например, для любого газа относительная плотность по водороду больше единицы: DH > 1; средняя молярная масса газа, состоящего из молекул различных соединений, находится в пределах значений молярных масс этих соединений:
и т. п.
Иногда в условиях задач объём газа даётся не при нормальных, а при каких-то других условиях. В этом случае, как обычно говорят, нужно привести объём к нормальным условиям. Для этого проще всего воспользоваться объединённым газовым законом, который математически выражается так:
.
Где V0 – объём газа при н.у., т.е. при нормальной температуре T0 = 273 K и при нормальном давлении P0 =101325 Па; V- объём газа при данной температуре T и данном давлении P.
Значение молярной массы газа, а также число молей газа можно найти при использовании уравнения Клапейрона - Менделеева:
PV=
Где P - давление газа , V- объём системы , m – масса газа, Т- абсолютная температура, R- универсальная газовая постоянная: R= 8,31 Дж / (
).
При расчётах газовых реакций нет необходимости определять число молей веществ, а достаточно пользоваться их объёмами. Из закона Авогадро и основного закона стехиометрии вытекает следующее следствие отношение объёмов газов, вступающих в реакцию, равно отношению коэффициентов в уравнении реакции. Это утверждение называется законом объёмных отношении Гей-Люссака.
















