113320 (616792), страница 2

Файл №616792 113320 (Особливості вивчення теми "Дроби" в початковій школі) 2 страница113320 (616792) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Виділення частин і вивчення відповідних дробів можна проводити і на дерев‘яних моделях куба, допускається поділ на 2, на 4 і на 8 рівних частин

[12; 95].

Ділення предметів, яке приводить до появи дробового числа, дітям можна показати і на такому прикладі потрібно розділити 3 яблука порівну між чотирма дітьми. Зрозуміло, що кожному дістанеться не ціле яблуко, а тільки деяка його частина. Розрізавши два яблука на половину, можна дати кожному по половині, а потім, розрізавши ще одне яблуко на чотири частини, дати кожному по його чверті. Спираючись на наочність, можна показати, що кожна дитина отримала по яблука [12; 94].

На наступних етапах ця робота проводиться уже на кресленнях (діти малюють круги, квадрати, відрізки прямої). Особливе значення має демонтстрація частин за допомогою відрізків. Намалювавши декілька відрізків однакової довжини, учні ділять кожен з них на те чи інше число рівних частин ( на 2, 3, 4, …, 12 частин). При цьому вони сприймають «на око довжину кожної з отриманих частин» і помічають, що «при збільшенні знаменника частини зменшуються» [13; 89].

За допомогою малюнків дітям легко розкрити зміст мішаних чисел. Так, учні (по зразку, який дав вчитель) малюють у зошиті певну кількість цілих кругів і його частини, а потім позначають все це деяким мішаним числом (наприклад, 2 , 3 ; рис.2) [11; 331].

Робота з малюнками дозволяє оперативно замінити одні частини другими, одну кількість – іншою, що створює сприятливі умови для переходу до вивчення властивостей самих дробів – до перетворення мішаного чи цілого числа у неправильний дріб і до виділення цілого числа із неправильного дробу, до перетворення одних частин у інші; до додавання і віднімання однойменних і кратних частин) [11; 327].

Поступово звільняючись від опори на малюнок, діти переходять до третього етапу: перетворення дробів (наприклад, виділення цілого числа із неправильного дробу або скорочення дробу і т.д.), маючи перед собою тільки його запис або лише слуховий образ. На цьому етапі можна переходити до логічного обгрунтування правил дій з дробами. Правда, в межах початкового вивчення методисти рекомендують залишатися на такому рівні, коли дії з дробами здійснюються не за цими правилами, а на основі роздумів, які випливають із наочного уявлення [11; 325].

Описані вище конкретні рекомендації можуть отримати чітке теоретичне обгрунтування, наприклад, у праці І.К. Андронова. Тут говориться наступне: «В природі можна спостерігати як елементи множин іноді розпадаються на нові елементи. Так, наприклад, горошина, прорастаючи, розпадається на дві частини, а якщо з апельсина зняти шкірку, то він легко розділяється на 10 частин.

Можна підібрати скільки завгодно прикладів подібного поділу елементів множин на рівні частини, які в свою чергу стають елементами інших множин

[4; 7]. Таке розбиття на частини допускають, наприклад, яблука, картопля, грядки, але воно неможливе на інших предметах: чашку, наприклад, на рівні частини роз‘єднати не можна [4; 7]. Спостерігаючи випадки розбиття, легко дати відповідне визначення поняття «частина елемента» - це кожна із рівних частин

[4; 8]. Звідси випливає і визначення дробового числа як пари натуральних чисел, одне з яких показує кількість частин, а інше – скільки таких частин взято

[4; 12].

Для всієї цієї лінії знайомства учнів з дробовим числом характерні наступні основні особливості:

1. Учням демонструють те, що деякі предмети (“одиниці”) можуть розпадатися, розбиватися на рівні частини або останні можуть бути виділені на цих предметах самою людиною. Кожна із частин, всі вони разом або деяка сукупність з них можуть бути об‘єктом прямого спостереження.

2. Учні визначають за допомогою цілого числа ту чи іншу кількість частин самих по собі (“Три частинки апельсина”), але після цього вони вказують одночасно і всю ту кількість частин, з яких виділена перша сукупність (“три частинки апельсина з десяти наявних” тощо).

  1. В житті вироблені конкретні словесні вираження для подібного одночасного вказування пари цілих чисел “одна з семи” або “одна сьома”, “три з десяти” або “три десятих”. Ця пара чисел і є дріб. Діти вчаться користуватися цими вираженнями при спостереженні за відповідними ситуаціями або на вимогу вчителя “взяти” ту чи іншу кількість частин із їх групи.

  2. Таким чином, тут мова йде про виникнення дробу із деякої конкретної реальності. Такою реальністю являється, як підкреслив І.Н. Шевченко, поділ можливих речей. Це і є “наочна концепція дробу” [12; 94]

А.С. Пчілка прямо говорить про “сприйняття дробових чисел”, про те, що завдання пропедевтики дробів “дати дітям наочне, цілком конкретне, образне уявлення про частини [11; 325]. Звичайно, що, відповідно до цих настанов, «при вивченні дробів процес навчання повинен проходити повільніше, ніж це було на множині цілих чисел» [11; 325]. Завдання пропедевтики полягає в тому «щоб учень початкової школи ясно уявляв собі дріб як одну чи декілька рівних частин цілого – круга, квадрата, одиниці».

«Наочна концепція дробу» являється тепер провідною в методиці викладання математики як у нас, так і за кордоном. Вона здається цілком логічною і життєвою, яка спирається на загальні уявлення про те, що числа являють собою своєрідне відображення реальності. Але тут є моменти, які так сказати «насторожують». У праці А.С. Пчілки говориться: «Із всіх способів вивчення дробового числа на цій сходинці розглядається тільки один спосіб ділення предметів на рівні частини [11; 327].

Звичайно, є і другі способи вивчення дробів, які не розглядаються у початковій школі. Вони перелічуються у методичній праці І.Н. Шевченка. Тут вказуються два основних джерела виникнення дробів. Вимірювання і ділення

[12; 81]. Ділення у свою чергу має дві форми: ділення речей, предметів і величин і ділення чисел. При цьому “фізичний акт ділення – прототип ділення виділених чисел, і ми говоримо про ділення цілих чисел як про джерело виникнення дробів, опираючись на наочні уявлення і на особистий досвід школярів [12; 81].

Таким чином, ділення речей як способів вивчення дробів, прийнятий у початковій школі, і відповідна йому “наочна концепція дробу” направлені на наступне введення дробів як часткового від ділення цілих чисел.

Ну, а вимірювання? Як справа з його вивченням у школі? Вражаюче, але факт – у початкових класах при вивченні дробів воно взагалі не застосовується [11; 302]. Основний же акцент у викладанні робиться на введення дробів через ділення предметів і частин. При цьому ні в теоретичному, ні в практичному плані тут навіть не робиться спроб якось поєднати виділені два джерела вивчення дробів або обґрунтувати домінуюче значення одного з них перед другим. Вимірювання просто ігнорується як важливе джерело цієї форми чисел, хоча зовні воно і вказується.

1.2 Історичний корінь «Наочної концепції дробу»

Як показує історія становлення основних математичних понять, зокрема

поняття числа, дійсна необхідність у дробах виникла при вимірюванні величин за

допомогою обраної одиниці [8; 239]. «...Історично дроби виникли у зв'язку з потребою вимірювати». Вимірювання різних величин за допомогою обраних мір (одиниць) показувало людям, що вираження його результату цілими числами найчастіше носить наближений характер. Для уточнення результатів вимірювання необхідно було вибирати інші, менші одиниці, які мали певне відношення до колишнього. «Таким чином, практика привела людину до необхідності використання різних одиниць, а з відношень одиниць цих конкретних мір виникло абстрактне поняття дробу» [8; 240].

Дробові числа широко застосовувалися древніми єгиптянами, вавилонянами, індусами, потім греками, а в середньовіччя - арабами. При цьому є підстави думати, що й у математиці як науці дроби спочатку розглядалися у зв'язку із задачами виміру величин. Так, стародавні греки раціональний дріб виду навіть не називали числом - це було для них відношення, розгляд якого поклало початок теорії звичайних дробів [8; 243]. Виклад звичайних дробів, даний Симоном Стевином наприкінці XVI в., супроводжувався виданням праці того ж автора про десяткові дроби [8; 245], які традиційно пов'язані з потребами саме вимірювання. Разом з тим уже з XIIст. у працях по арифметиці при описі ділення чисел з остачею дроби розглядаються як частини чисел (ця точка зору може бути вловлена ще в єгиптян) [8; 255].

Аж до ХVП-ХVПІст. у математиці вироблялися самі правила дій із дробовими числами. У підручники європейських шкіл викладання дробів стало проникати в XVIIIст. При цьому Хр. Вольф у своєму керівництві вперше висловлює вимогу про те, щоб закони арифметичних дій, раніше встановлені при обігу із цілими числами, обґрунтовувалися й для дробів. Але методи цього обґрунтування були розроблені тільки в XIX в. [8; 245-263].

Практика дій із самими дробами, вірніше з їх символами, наприклад з вираженням відношення , поступово приводила до того, що усередині математики форма цих «нових» чисел усе більше й більше відділялась від їхньої першооснови, від вимірювання. «Останній, і самий істотний, крок, - пишуть

Р. Курант і Г. Роббінс, торкаючись цього питання, - був зроблений уже усвідомлено, після багатьох сторіч нагромадження окремих зусиль: символ був звільнений від його конкретного зв'язку із процесом вимірювання й самих вимірюваних величин і став розглядатися як абстрактне число, самостійна сутність, зрівняна у своїх правах з натуральним числом».

Такий свідомий перехід до розгляду дробів як «самостійної сутності» був зроблений при розв‘язуванні особливих пізнавальних задач, пов‘язаних із внутрішнім розвитком самої математики як теоретичної дисципліни. Справа, в тому, що в межах тільки натуральних чисел не завжди здійсненні операції виділення й ділення. З розвитком математичного апарата виникає теоретична потреба в знятті цих обмежень. «Введення» дробових чисел усувало перешкоди, що заважають виконувати ділення (подібно тому як негативні числа усували перешкоди для виділення), але без порушення основних арифметичних законів (асоціативного, комутативного й дистрибутивного). Подібне розширення області чисел (тут - побудова системи раціональних чисел) є одним із проявів основного способу утворення нових понять у сучасній алгебрі [9; 8]. Це - «одна з форм характерного в математиці процесу узагальнення».

Ця форма узагальнення й відповідний їй алгебраїчний спосіб утворення нових понять був розроблений в XIXст. («принцип сталості формальних законів»). Потім в абстрактній формі цей спосіб розширення числової області застосовується в теорії пар, що використається, зокрема, і для введення дробових чисел. Якщо операція над двома числами неможлива в області наявних чисел, то вводиться новий символ у вигляді пари колишніх чисел (а,в, для якої встановлюються визначення рівності, більше, менше й т.д. Якщо арифметичні дії над новими символами підкоряються законам дій над колишніми, тонові символи визнаються числами [8; 264].

Теорія пар прийнята в сучасній математиці, дозволяє логічно бездоганно будувати числові системи без якого-небудь звертання до «конкретної дійсності», у випадку раціональних чисел - без звертання до вимірювання. Вона стала потужним знаряддям теоретичного дослідження й, природно, уважається єдино й справді науковою.

Ця установка в теорії числових систем поступово стала проникати й поширюватися на викладання математики як у вищих, так й у середніх навчальних закладах. Цілком природне прагнення педагогів до відновлення курсу математики приводило до того, що зазначений підхід до введення чисел став сприйматися як єдино сучасний і строгий. Створилася ситуація, що ще в 30-і роки була в такий спосіб охарактеризована А. Н. Колмогоровим: «...Дуже поширена думка, що найбільш «науковим» підходом до введення раціональних чисел є підхід з боку довільного розширення області цілих чисел для досягнення необмеженої реалізації дії ділення... Часто учням повідомляють помилкові твердження, що справді наукова побудова раціональних чисел не повинна мати нічого загального з вимірюванням величин. Часто говорять, що правила дії над дробами є лише «зручні угоди», що зберігають незмінними закони дій» [9; 8-9].

Однак зазначена думка, розповсюджена серед методистів, послужила причиною того положення речей, коли вимірювання величин як джерело дробів стало ігноруватися. Це відношення до реального вимірювання було б, видимо, правомірним, якби традиційний зміст шкільної математики змінився б настільки, що злився б з поняттями абстрактної алгебри як навчанні про операції. Але тоді, звичайно, це був би інший навчальний предмет, з іншими загальними освітніми цілями, у якому, до речі, різні види чисел мали б й іншу пізнавальну цінність, чим у нинішньому навчальному предметі. Однак так далеко ні в недалекому минулому, ні в найближчому майбутньому перебудова курсу не зайшла й не зайде. Цей курс усе ще далекий від способів утворення понять у загальній (абстрактній) алгебрі, що у свій час саме й було відзначено А. Н. Колмогоровим: «Вся ця концепція занадто абстрактна не тільки для того, щоб у явному вигляді викладатися в середній школі, але й для того, щоб служити опорою для вчителя в цьому викладанні». І потім він констатує справжнє положення речей: «У дійсності, звичайно, ніхто й не намагається викладати в школі ідеї сучасної абстрактної алгебри» [ 9; 9].

Характеристики

Тип файла
Документ
Размер
1,44 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее