112823 (616614), страница 3
Текст из файла (страница 3)
Особой популярностью в классе пользуются задания по диагностике, тренировочные упражнения в решении задач, контроль и работа над ошибками. Компьютер используется на уроке в 3 классе в течение 10 – 15 минут 1 – 2 раза в неделю на различных этапах урока. Уроки с компьютерной поддержкой позволяют решать на уроке следующие задачи: повышение интереса к предмету, осуществление дифференцированного подхода, увеличение возможности проведения тренировочных и коррекционных заданий, увеличение объема проверяемого материала, облегчение процесс контроля и оценки знаний.
Программа Н. Б. Истоминой знакомит и учит решать задачи алгебраическим способом, то есть способом составления уравнения. В компьютерной программе для начальной школы «Семейный наставник» существует подборка задач для решения их алгебраическим способом. В них пошагово отрабатываются все этапы алгоритма этого способа: введение неизвестного, выражение через это неизвестное величин, о которых говорится в задаче, составление уравнения, решение его, осмысление результата и формулировка ответа.
Эта программа в гимназии используется постоянно, так как помогает в мониторинге качества знаний учащихся по математике. Дополнительно на каждого ученика педагогом заводится диагностическая карта по решению задач, в которой фиксируется успешность ученика в умении решать задачи, недочеты на каждом этапе решения, как в алгебраическом, так и в арифметическом способе решения задач.
К сожалению, ни одна компьютерная программа не предлагает заданий на графическое моделирование текстовых задач, т.к. компьютерные программы ориентированы в большей степени на традиционную программу. Моделирование (в обучении - по Истоминой) как психологическая проблема имеет два аспекта: как содержание, как способ познания и как одно из основных учебных действий, которое является составным компонентом учебной деятельности. Сегодня мы говорим о моделировании как о средстве представления текста задачи и как о средстве поиска решения задачи. На графическое моделирование текстовых задач на уроке выделяется достаточно много времени (для этого не надо жалеть времени). Третьеклассники составляют свою программу для компьютера по моделированию.
Предлагаемый урок (см. приложение 2) – исследование алгебраического способа решения задач в 3 класс, составление алгоритма этого способа. Дети должны на уроке для себя открыть этот способ и составить его алгоритм Формы работы: коллективные, парные, групповые и индивидуальные. Урок проводится в компьютерном классе с использованием программы «Семейный наставник». Дети с самого начала урока разделены на группы по привязанности друг к другу. На партах находятся необходимые учебные принадлежности, фломастеры и четвертая часть листа ватмана для записи алгоритма алгебраического способа решения, памятка с арифметическим способом решения задачи.
Выработанная педагогами гимназии система работы с задачей, проведение уроков с компьютерной поддержкой дают положительные результаты: стабильно высокое качество знаний по математике в 96%, «5» у 40% учащихся, минимум ошибок при решении задач, первые и призовые места в гимназических, городских олимпиадах.
Заключение
Таким образом, решение текстовых задач не случайно всегда волновало учителей, методистов, да и самих учащихся и их родителей.
Во-первых, нельзя решить задачу, не поняв ее содержание. Следовательно, умение решать текстовые задачи свидетельствует об одной из самых важных способностей человека - способности понимать текст. Правы те учителя, которые добиваются понимания текста не только на уроках чтения, но и на уроках математики. Критерием понимания задачи является факт решения задачи. Поэтому решение текстовых задач - это деятельность, весьма важная для общего развития. Обучая решать текстовые задачи, мы приучаем ориентироваться в ситуациях, делаем человека более компетентным. Конечно, для этого нужно резко расширить тематику задач, давать детям задачи, разнообразные по тематике, а не только «на скорость», «на работу», «на покупки».
Во-вторых, решение задачи алгебраическим методом - чуть ли не единственный путь для объяснения ученикам того, чем вообще занимается математика, - объяснения метода математического моделирования. Собственная деятельность школьника в этой области протекает именно и только при решении текстовых задач алгебраическим методом. Ученик читает условия, характеризующие некоторую бытовую ситуацию, переводит эту ситуацию на математический язык (составляет уравнения) и затем решает уравнения, уже не думая о данной бытовой ситуации. Он работает с математической моделью. Наконец, он получает результат на языке этой модели и переводит его на естественный язык (осмысление и запись ответа) - получает решение бытовой задачи.
Решение текстовых задач способствует, с одной стороны, закреплению на практике приобретённых умений и навыков, с другой стороны, развитию логического мышления учащихся10.
Наблюдается активизация их мыслительной деятельности. При правильной организации работы у учащихся развивается активность, наблюдательность, находчивость, сообразительность, смекалка, развивается абстрактное мышление, умение применять теорию к решению конкретных задач.
Список литературы
-
Виноградова Л.П. Обучение решению задач // Фестиваль педагогических идей «Открытый урок». – М.: Первое сентября, 2004. – 540 с.
-
Епишева О.Б. Общая методика преподавания математики в средней школе: Курс лекций. - Тобольск: Изд. ТГПИ им. Д.И.Менделеева, 1997. – 338 с.
-
Паламарчук В.Ф. Школа учит мыслить. - М.: Просвещение, 1987. – 264 с.
-
Фридман Л.М., Турецкий Е.Н. Как научиться решать задачи. - М.: Просвещение, 1984. – 250 с.
-
Хеннер Е.К., Шестаков А.П. Математическое моделирование. Пособие для учителя. – Пермь, 1995. – 158 с.
-
Лебедев В. Анализ и решение текстовых задач // Математика в школе. – 2002. - №11. - С. 8.
-
Левитас Г.Г. Об алгебраическом решении текстовых задач // Математика в школе. – 2000. - №8. - С. 13.
-
Мордкович А.Г. Алгебра. Учебник для 7 класса общеобразовательной школы. - М.: Мнемозина, 1997. – 284 с.
-
Петухова Л.И. О решении текстовых задач по математике // Фестиваль педагогических идей «Открытый урок». – М.: Первое сентября, 2004. – 540 с.
-
Фоминых Ю. Одну задачу несколькими методами // Математика в школе. – 2004. - №20. - С. 17.
-
Чаплыгин В.Ф. Некоторые методические соображения по решению текстовых задач // Математика в школе. – 2000. - №4. - С.28.
Приложение 1.
Пример решения задачи
Задача. Расстояние между двумя городами скорый поезд проходит на 4 часа быстрее товарного и на 1 час быстрее пассажирского. Найти скорости товарного и скорого поездов, если известно, что скорость товарного поезда составляет 5/8 от скорости пассажирского и на 50 км/ч меньше скорости скорого.
Решение (черновик).
Отвечаем на вопросы, поэтапно составляя таблицу.
1. Речь идёт о процессе движения, которое характеризуется тремя величинами: расстояние, скорость, время (3 столбца таблицы).
2. В задаче 3 процесса: движение скорого, пассажирского и товарного поездов (3 строчки таблицы).
Можно составить «скелет» таблицы.
| Величины Процессы | Расстояние (км) | Скорость (км/ч) | Время (ч) |
| Скорый поезд | |||
| Пассажирский поезд | |||
| Товарный поезд |
3. Заполняем таблицу в соответствии с условиями задачи
4. Вводим неизвестные величины: x, км/ч – скорость товарного поезда, y, ч – время движения скорого поезда.
5. Составим «модель».
(x+50)y = 8/5 x(y+1)
8/5 x(y+1) = x(y+4)
6. Решаем эту систему. Из первого уравнения находим у. Из второго уравнения находим х.
Решение задачи (чистовик).
Пусть х, км/ч – скорость товарного поезда (х>0), у, ч – время движения скорого поезда (у>0).
Составляем таблицу.
| Величины Процессы | Расстояние (км) | Скорость (км/ч) | Время (ч) |
| Скорый поезд | (х+50)у | х+50 ? | у |
| Пассажирский поезд | 8/5 х(у+1) | 8/5 х | у+1 |
| Товарный поезд | х(у+4) | х ? | у+4 |
По условию задачи поезда прошли одно и то же расстояние. Получаем систему уравнений
8/5 х(у+1) = х(у+4)
(х+50)у = х(у+4).
По условию задачи х>0, тогда
8(у+1) = 5(у+4)
(х+50)у = х(у+4),
3у = 12
(х+50)у = х(у+4),
у = 4
х+50 = 2х,
у = 4
х = 50.
Полученные значения неизвестных удовлетворяют условию х>0, у>0, значит удовлетворяют условию задачи.
50 км/ч – скорость товарного поезда.
50+50 = 100 (км/ч) – скорость скорого поезда.
Проверка по условию задачи.
50 км/ч – скорость товарного поезда,
4+4 = 8 (ч) – время движения товарного поезда.
50*8 = 400 (км) – расстояние, которое прошёл товарный поезд.
50*8/5 = 80 (км/ч) – скорость пассажирского поезда.
4+1 = 5 (ч) – время движения пассажирского поезда.
80*5 = 400 (км) – расстояние, которое прошёл пассажирский поезд.
4 ч – время движения скорого поезда.
50+50 = 100 (км/ч) – скорость скорого поезда.
100*4 = 400 (км) – расстояние, которое прошёл скорый поезд.
Каждый поезд прошёл одно и то же расстояние.
Задача решена верно.
Ответ: 50 км/ч, 100 км/ч.
Аналогично можно решать задачи «на работу», «наполнение бассейна».
Приложение 2.
Урок «Составление алгоритма алгебраического способа решения задач»
Цель:
-
Исследование алгебраического способа решения задач и составление алгоритма.
-
Формирование действия моделирования.
-
Развитие компонентов УД.
Оборудование:
1. Карточки:
-
арифметический способ решения;
-
алгебраический способ решения;
-
задача.
2. Фломастеры, мелки, чистые листы, магниты, компьютеры.
3. Учебные принадлежности.
Ход урока
Организационный момент:
Чему учимся на уроке математики?
Что уже знаем хорошо?
Чему надо учиться?
Тему урока сформулируем позже.
Откроем тетради, оформим начало работы.
Актуализация:
1. Вспомним некоторые умения, которые помогут в дальнейшем.
Индивидуальная работа - Составить по схеме уравнения и записать их.
| Х | 5 | |||
| 5 | 20 | 72 | ||
(3· х+5· 2+20=72)
Все остальные учащиеся выполняют любое из этих заданий:
Запиши уравнения и реши их.
1. Число 40 увеличили на произведение числа 6 и неизвестного и получили 76.
2. Составьте уравнение и решите задачи.
В классе 28 учеников. Сколько мальчиков в классе, если девочек 13?
В трех вазах 27 гвоздик. В первой вазе на 3 гвоздики меньше, чем во второй вазе, и на 6 гвоздик больше, чем в третьей. Сколько гвоздик в третьей вазе?
1.187 * (33467 : 49 – 362)
Что мы должны знать об уравнении?
Для чего нужны уравнения?
2. Построение моделей к уравнениям выполняем неплохо.
Вспомним, как они решаются.
Нам поможет компьютер.
Сели за компьютер. Задания выполняем в уме.
Порядок работы:
-
Прочитай информацию.
-
Подумай, а потом выполняй.
Какие инструменты нам необходимы:
-
экран
-
мышка
-
калькулятор
-
резинка
в конце посмотреть результаты, сравнить с прошлым.
(Даются 11 заданий: сложные уравнения на : и х в пределах 100)
Кто закончил на черновике, составляет уравнения с числами а, 8, 32, 4.
3. Нам необходимо еще вспомнить одно умение.
(арифметический способ решения задач на листочках.)
Задача. В трех одинаковых ящиках 21 кг апельсинов. Сколько апельсинов в 8 таких же ящиках?
Работаем в паре.
Модель, решение. (Можно записать выражением, можно по действиям.)
Проверяем.
Чем пользовались?















