101912 (614679), страница 2

Файл №614679 101912 (Прогнозирование емкости и коньюктуры рынка) 2 страница101912 (614679) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

2). а) Метод Фостера – Стюарта

t

Yt

Ut

lt

S

D

Pt

1

11,9

-

-

-

-

-

2

12,6

1

0

1

1

1

3

12,2

0

0

0

0

1

4

13,9

1

0

1

1

3

5

14,3

1

0

1

1

4

6

14,6

1

0

1

1

5

7

15,3

1

0

1

1

6

8

14,4

0

0

0

0

5

9

15,8

1

0

1

1

8

10

16,7

1

0

1

1

9

11

17,4

1

0

1

1

10

12

16,1

0

0

0

0

9

175,2

8

8

61

Выдвинем нулевую гипотезу: во временном ряде (данные графы 2) нет тенденции среднего уровня и нет тенденции дисперсии. Для проверки выдвинутой нулевой гипотезы необходимо рассчитать по формулам и значения t1 и t2. Но для этого надо знать значения μ, σ1, σ2 . В приложении 1 приведены данные для n=10 и для n=15, а нам надо найти данные для n=12.

Для нахождения данных при n=12 используем принцип интерполяции, предположив, что эти данные в интервале от n=10 до n=15 изменяются линейно, т.е. равномерно. Поэтому нам нужно к значениям данных при n=10 прибавить их изменения за два (2=12–10) шага и получить искомые данных.

Найдем μ для n=12 следующим образом. Значение μ для n=10, согласно приложению 1, равно 3,858. Увеличение μ при изменении n на 2 шага найдем следующим образом

.

Отсюда μ(12)=μ(10)+Δμ=3,858+0,311=4,169. Аналогичным образом найдем значения для σ1(12)=1,381 и для σ2(12)=2,040. По формулам (2.7) найдем значения t1 и t2

= (8 – 4,169)/1,381 = 3,326; = (8-0)/2,040 = 3,92

Случайные величины t1 и t2 имеют распределение Стьюдента с числом степеней свободы К = n – 1 = 12 – 1 = 11 и уровнем значимости a, который может принимать значения 0,01; 0,05 и т.д. Примем уровень значимости (вероятность, с которой исследователь может ошибиться), равный 0,05 (5%). На основе выбранного уровня значимости а = 0,05 рассчитаем доверительную вероятность: = 1 – а = 1 – 0,05 = 0,95.

По числу степеней свободы К = 11 и величине доверительной вероятности = 0,95 по таблице «Значение t-критерия Стьюдента» (Приложение 1)определим табличное значение случайной величины (t): t = 2,201.

Расчетные значения t1 и t2 сопоставим с табличным t.

Если сопоставить расчетные значения t1 и t2 с табличным t, то может возникнуть четыре ситуации.

1) |t1| > |t|.

Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью во временном ряде имеет место тенденция дисперсии.

2) |t1| < |t|.

Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью во временном ряде нет тенденции дисперсии.

3) |t2| > |t|.

Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью во временном ряде имеет место тенденция в среднем.

4) |t2| < |t|.

Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью во временном ряде нет тенденции в среднем.

1) 3,326 > 2,201; 3,92 > 2,201 нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью = 0,95 можно говорить, что во временном ряде имеет место тенденция дисперсии

б) Метод коэффициента Кенделла

Определим расчетное значение коэффициента Кендэла (р):

р =

4 р

– 1,

n (n – 1)

где n – количество уровней во временном ряде.

р =

4 61

– 1 = 0,85

12 (12 – 1)

Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (М = 0) и дисперсия, рассчитываемая по формуле:

2 =

2 (2 n + 5)

.

9 n (n – 1)

2 =

2 (2 12 + 5)

=

58

= 0,049

9 12 (12 – 1)

1188

Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.

1) (0 – td ) < р < (0 + td ),

где td – коэффициент доверия.

Данный вариант означает, что с вероятностью td во временном ряде нет тренда.

2) р < (0 – td )

Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.

3) р > (0 + td )

Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.

При выбранной вероятности 0,95 (95%) коэффициент доверия td = 1,96.

р > (0 + 1,96 )

0,85 > + 0,434

Таким образом, с вероятностью 0,95 (95%) можно говорить о наличии в ряде возрастающей тенденции в среднем (тренда).

В ходе анализа временного ряда на наличие в нем тенденции среднего уровня (тренда) по методу Фостера – Стюарта и методу коэффициента Кенделла получены аналогичные результаты. Следовательно, в ряде отмечается возрастающая тенденция в среднем.

Таким образом, визуальная оценка нашла свое подтверждение в ходе аналитических расчетов с использованием соответствующих методов оценки временного ряда на наличие в нем тенденции.

3). Метод усреднения по левой и правой половине

Метод усреднения по левой и правой половине - графический метод, используется для нахождения параметров линейного тренда.

Для нахождения параметров а0 и а1 разделим исходные данные пополам и по каждой половине рассчитаем средние значения фактора и уровня ряда.

1 =

1 + 2 + 3 + 4 + 5 + 6

= 3,5

6

1 =

11,9 + 12,6 + 12,2 + 13,9 + 14,3 + 14,6

= 13,25

6

2 =

7 + 8 + 9 + 10 + 11 + 12

= 9,5

6

2 =

15,3 + 14,4 + 15,8 + 16,7 + 17,4 + 16,1

= 15,95

6

В результате расчетов получили две точки: А (3,5; 13,25), В (9,5; 15,95).

Построим графическую модель исходного временного ряда и найдя точки А и В, проведем через них прямую, которая будет отображать тенденцию исходного временного ряда (рис. 3).

yt

Рис. 3. Еженедельный оборот магазина «Ткани для дома» (исходный ряд и линейный тренд)

Из графика видно, что построенный линейный тренд отражает тенденцию исходного ряда: возрастающий тренд.

Для нахождения параметра а0 продолжим линию до пересечения с осью ординат. Чтобы найти параметр а1, преобразуем уравнение тренда:

а1t = – а0 | :t

а1 =

– а0

t

Зададимся произвольным значение параметра t (например, t = 3,5). По графику модели найдем значение параметра а00 = 13,45). Рассчитаем значение параметра а1.

а1 =

13,25 – 11,8

= 0,41

3,5

Таким образом, уравнение линейного тренда будет иметь следующий конкретный вид:

= 11,8+ 0,41t.

4). Расчет параметров линейного тренда t = а0 + а1t по исходным данным методом МНК.

t

y

t2

yt

1

11,9

1

11,9

2

12,6

4

25,2

3

12,2

9

36,6

4

13,9

16

55,6

5

14,3

25

71,5

6

14,6

36

87,6

7

15,3

49

107,1

8

14,4

64

115,2

9

15,8

81

142,2

10

16,7

100

167

11

17,4

121

191,4

12

16,1

144

193,2

78
175,2
650
1204,5

Для нахождения параметров строится система нормальных уравнений.

=(175,2*650-78*1204,5)/(12*650-78*78)=11,614;

Характеристики

Тип файла
Документ
Размер
3,03 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6845
Авторов
на СтудИзбе
274
Средний доход
с одного платного файла
Обучение Подробнее