94620 (613131), страница 2
Текст из файла (страница 2)
Технологічнахарактеристика: При вирощуванні гриба штаму 1MB F 100017 на водно-борошняній суспензії (концентрація сухих речовин кукурудзяного, житнього або пшеничного сусла повинна бути не менше 18 - 20%) культура активно синтезує ферменти глюкоамілазного комплексу При глибинному культивуванні на 5 добу в умовах інтенсивної аерації глюкоамілазна активність досягає 200 - 220 од/см3). Біотехнологічні показники заявленого штаму 1MB F 100017 ілюструються прикладом.
Приклад: Оцінку виробничих якостей штаму 1MB F 100017 проводили методом глибинного культивування на розвареній оцукреній водно-борошняній суспензії Співвідношення борошна і води 1 2,5, оцукрювали бактеріальною а-амілазою (1,5 од/г крохмалю) Витрати повітря на аерацію 25 - ЗО м3/м3/год при постійному перемішуванні 110-120 об/хв.
Температура культивування - 35°С
Тривалість процесу -120 годин
В культуральній рідині (в кінці вирощування) визначали активність амілолітичних ферментів. Дані, які підтверджують перевагу заявленого штаму в порівнянні зі штамом-прототипом, наведені є таблиці 1.1.
Таблиця 1.1. Показники продуктивності шатму гриба Asp. awamon
| Показники | Штами гриба Asp. awamon | |
| (заявлений) | (прототип) | |
| Тривалість процесу, год | 120 | 144 |
| а-аміпазна активність, од/см3 | 50 ±5 | 30 ±5 |
| Глюкоамілазна активність од/см3 | 150±10 | 110 ± 10 |
| Сумарна амілолггична активність, од/см3 | 200 - 220 | 140-180 |
Як видно з таблиці, при використанні заявленого штаму а-амілази накопичусться на 15% більше ніж за прототипом Глюкоамілазна активність - на 36% більше, ніж за прототипом Тривалість процесу накопичення ферментів скорочується на 20%
Таким чином застосування заявленого штаму дозволяє збільшити на 20 - 30% накопичення амілолггичних ферментів, а також скоротити тривалість їх накопичення на 20%
Номер патенту: 47822
Клас (и) патенту: C12N 1 / 14, C12R 1 / 665, C12P 7 / 06
Номер заявки: 2001096648
Дата подачі заявки: 28.09.2001
Дата публікації: 15.07.2002
Заявник (и): Український науково-дослідний інститут спирту і біотехнології продовольчих продуктів.
Автор (и): Олійнічук Сергій Тимофійович; Левандовський Леонід Вікторович; Ткаченко Алла Феодосіївна; Рудніченко Людмила Вікторівна; Коваль Катерина Олександрівна; Бейко Наталія Євгенівна
Патентовласник (и): Український науково-дослідний інститут спирту і біотехнології продовольчих продуктів.
1.4.2 Штам бактерій Васillus licheniformis – продуцент комплексу термостабільним амілолітичні і протеолітичних ферментів
Суть винаходу: винахід відноситься до біотехнології і може бути використане в спиртовому, крохмале-патоковому, пивоварному, хлібопекарському, кондитерському, плодово-ягідному, текстильному виробництвах, де потрібні ферменти, стійкі до підвищених температур. Штам бактерій Bacillus licheniformis ВКМ У-2184 Д виділений селекційним шляхом при вивченні природної мінливості штаму МКПМ В-6508 із застосуванням методів ефективного мутагенезу. Продукує комплекс, що містить не менше п'яти термостабільних амілолітичних і протеолітичних ферментів. Активний діапазон значень рН 5,0-11,0 і температури 30-105 º С з максимальною активністю альфа-амілази при 90-95 º С, пуллуланази - при 75 º С, протеази - при 60 º С. Перспективний для одночасної обробки крохмалю або крохмалевмісних сировини з метою його глибокого гідролізу і як продуцент лужних протеаз для глибокого розщеплення білків до амінокислот. Штам має підвищену здатність синтезу комплексу термостабільним амілолітичні і протеолітичних ферментів, що володіє також бета-глюканазной і ламінаріназной активностями.
Номер патенту: 2177995
Клас (и) патенту: C12N1/20, C12N9/28, C12N9/44, C12N9/56, C12N1/20, C12R1: 10
Номер заявки: 98102082/13
Дата подачі заявки: 05.02.1998
Дата публікації: 10.01.2002
Заявник (и): Товариство з обмеженою відповідальністю Науково-виробнича компанія "Фермтек"
Автор (и): Цурікова Н.В.; Нефедова Л.І.; Окунєв О.Н.; Синицин А.П.; Черноглазов В.М.
Патентовласник (и): Товариство з обмеженою відповідальністю Науково-виробнича компанія "Фермтек"
Опис винаходу: винахід відноситься до галузі біотехнології, а саме до отримання комплексу амілолітичних і протеолітичних ферментів, і може бути використане в мікробіологічнійпромисловості. Амілолітичні ферменти широко використовуються для розрідження або перетворення крохмалю і крохмалевмісної рослинної сировини в такі продукти, як мальтодекстрин, цукрові сиропи, декстрозу, мальтозу, глюкозу та ін При промисловому використанні амілолітичних ферментів необхідні термостабільні ферменти, що обумовлені їх здатністю вести гідроліз сировини при високих температурах - 80-100 º С, що дуже важливо з точки зору ведення процесу клейстерізації крохмалю. При цьому поєднуються два процеси: клейстерізація крохмалю і його ферментативний гідроліз. Значно знижується вартість ферментативного процесу за рахунок скорочення дозування ферменту і тривалості гідролізу крохмалю, більш якісно ведеться підготовка сировини до розварювання - забезпечується висока ступінь гідролізу крохмалю і, як наслідок цього, збільшується вихід цільового продукту. Для переважної більшості продуцентів амілолітичних ферментів характерний переважний біосинтез одного з ферментів. Здатність до утворення комплексу ендогенних амілолітичних ферментів, особливо термостабільності, виявляється дуже рідко. У цьому зв'язку можна назвати ряд термостабільним анаеробів з роду Clostridium. Відомий штам Clostridium thermohidrosulfuricum, що синтезує комплекс, що містить термостабільні пуллуланазу і глюкоамілазу. У літературі описано декілька анаеробних термофілів з роду Clostridium, що здійснюють біосинтез амілази і пуллуланази або альфа-амілази і глюкоамілази, активних при високій температурі. Однак складність культивування анаеробних бактерій в заводських умовах робить цей спосіб отримання препарату амілолітичних ферментів практично непридатним. З літературних даних відомо, що найбільш термостабільними гідролітичними ферментами, такими як альфа-амілази, пуллуланази, а в ряді випадків і протеази є ферменти, які продукують термофільних бактерій Bacillus licheniformis. Відомий аеробний Термофіл Bacillus licheniformis, який при культивуванні на середовищі з кукурудзяної борошном оптимального для отримання продукту складу синтезує комплекс позаклітинних амілолітичні ферментів - альфа-амілазу і пуллуланазу в кількості 2 од / мл і 0,68 од / л відповідно (5). Недоліком цього штаму є низька активність продукуються ферментів, вузький спектр дії комплексу і тривалість процесу культивування (144 години). Недоліками штаму є порівняно низький рівень активності, а також висока вартість культивування через застосування висококонцентрованою живильного середовища та тривалості процесу.
Культурально-морфологічні ознаки: Клітини являють собою грампозитивні, поодинокі рухливі палички розміром 0,6-0,8 і 0,2-0,3 мк, спороутворюючі. У перші години зростання (логарифмічна фаза) утворюються ланцюжки з 2-3 клітин більш витягнутої форми, до 48-56 години зростання (стаціонарна фаза) ланцюжка розпадаються, клітини товщають, з'являються спори, що мають центральне положення і овальну форму.
2. МЕХАНІЗМ ДІЇ ТА ВЛАСТИВОСТІ АМІЛОЛІТИЧНИХ ФЕРМЕНТІВ
2.1 Властивості та структура ферментів
Принципова структура ферменту наступна: кожен фермент складається з апофермента і коферменту, які, кожен окремо, не активний, але виявляють свою дію в комплексі - холоферменті. Всі ферменти мають білкову природу. Вони являють собою або прості білки, цілком побудовані з поліпептидних ланцюгів і розпадаються при гідролізі тільки на амінокислоти (наприклад, гідролітичні ферменти трипсин і пепсин, уреаза), або - в більшості випадків - складні білки, що містять разом з білкової частиною (апоферментом) небілкової компонент (кофермент або простетичної групу). Багато ферменти з великою молекулярною масою проявляють каталітичну активність тільки у присутності специфічних низькомолекулярних речовин, які називаються коферментом (або кофактором). Роль коферментів грають більшість вітамінів і багато мінеральних речовин. Вітаміни РР (нікотинова кислота, або ніацин) і рибофлавін, наприклад, входять до складу коферментів, необхідних для функціонування дегідрогеназ. Цинк - кофермент карбоангідрази, ферменту, який каталізує вивільнення з крові діоксиду вуглецю, який видаляється з організму разом з повітрям, що видихається. Залізо і мідь служать компонентами дихального ферменту цитохромоксидази. Речовини, яка піддається перетворенню в присутності ферменту, називають субстратом. Субстрат приєднується до ферменту, який прискорює розрив одних хімічних зв'язків в його молекулі та створення інших; що утворюється в результаті продукт від'єднується від ферменту. Продукт теж можна вважати субстратом, оскільки всі ферментативні реакції в тій чи іншій мірі оборотні.
За типом реакцій, що каталізуються ферменти підрозділяються на 6 класів згідно ієрархічної класифікації ферментів (КФ, EC - Enzyme Comission code). Кожен клас містить підкласи, так що фермент описується сукупністю чотирьох чисел, розділених крапками. Перше число грубо описує механізм реакції, що каталізується ферментом:
КФ 1: оксидоредуктаиз, каталізують окислення або відновлення.
КФ 2: трансферази, каталізують перенос хімічних груп з однієї молекули субстрату на іншу.
КФ 3: Гідролази, каталізують гідроліз хімічних зв'язків. Приклад: естерази, пепсин, трипсин, амілаза, ліпопротеінліпаза
КФ 4: Ліази, каталізують розрив хімічних зв'язків без гідролізу з утворенням подвійного зв'язку в одному з продуктів.
КФ 5: Ізомерази, каталізують структурні або геометричні зміни в молекулі субстрату.
КФ 6: Лігази, каталізують утворення хімічних зв'язків між субстратами за рахунок гідролізу АТФ.
Будучи каталізаторами, ферменти прискорюють як пряму, так і зворотну реакції, тому, наприклад, ліази здатні каталізувати і зворотну реакцію – приєднання по подвійним зв'язкам.
Ферменти являють собою біокаталізатори білкової природи. Каталізуючи переважна більшість біохімічних реакцій в організмі, ферменти регулюють обмін речовин і енергії, граючи тим самим важливу роль у всіх процесах життєдіяльності. Всі функціональні прояви живих організмів (дихання, м'язова скорочення, передача нервового імпульсу, розмноження і т.д.) забезпечуються дією ферментних систем. Сукупністю ферментних реакцій, що каталізуються, є синтез, розпад та інші перетворення білків, жирів, вуглеводів, нуклеїнових кислот, гормонів та інших сполук.
Активність ферментів визначається їх тривимірної структурою [3]. Як і всі білки, ферменти синтезуються у вигляді лінійного ланцюжка амінокислот, яка згортається певним чином. Кожна послідовність амінокислот згортається особливим чином, і виходить молекула (білкова глобула) має унікальні властивості. Кілька білкових ланцюгів можуть об'єднуватися в білковий комплекс. Третинна структура білків руйнується при нагріванні або дії деяких хімічних речовин.
Щоб каталізувати реакцію, фермент повинен зв'язатися з одним або декількома субстратами. Білковий ланцюг ферменту згортається таким чином, що на поверхні глобули утворюється щілина, або западина, де зв'язуються субстрати. Ця область називається сайтом зв'язування субстрату. Зазвичай він збігається з активним центром ферменту або знаходиться поблизу нього. Деякі ферменти містять також сайти зв'язування кофакторів або іонів металів.
Фермент, з'єднуючись з субстратом:
• очищає субстрат від водяної «шуби»
• має у своєму розпорядженні реагують молекули субстратів в просторі за потрібне для протікання реакції чином
• готує до реакції (наприклад, поляризує) молекули субстратів.
Зазвичай приєднання ферменту до субстрату відбувається за рахунок іонних або водневих зв'язків, рідше – за рахунок ковалентних. Наприкінці реакції її продукт (або продукти) відділяються від ферменту.
У результаті фермент знижує енергію активації реакції. Це відбувається тому, що в присутності ферменту реакція йде іншим шляхом (фактично відбувається інша реакція), наприклад:
У відсутності ферменту:
А + В = АВ
У присутності ферменту:
А + Ф = АФ
АФ + В = АВФ
АВФ = АВ + Ф
де А, В - субстрати, АВ - продукт реакції, Ф - фермент.
Ферменти не можуть самостійно забезпечувати енергією ендергонічні реакції (для протікання яких потрібна енергія). Тому ферменти, що здійснюють такі реакції, сполучати їх з екзергонічними реакціями, що йдуть з виділенням більшої кількості енергії [2,7].
2.2 Класифікація амілолітичних ферментів
Амілолітичні ферменти об'єднують велику групу ферментів, які здійснюють гідроліз переважно α-(1,4)-Глікозидних зв'язків амілози, амілопектину, глікогену та інших мальтоолігосахаридів. До групи амілолітичних ферментів відносяться наведені нижче і деякі інші ферменти:
КФ 3.2.1.1 α-амілаза
КФ 3.2.1.2 β-амілаза
КФ 3.2.1.3 Глюкоамілаза
КФ 3.2.1.41 Пуллуланаза
КФ 3.2.1.68 Ізоамілаза















