93563 (613027), страница 4

Файл №613027 93563 (Распространенность ревматоидного артрита среди населения Ошской области) 4 страница93563 (613027) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

В зависимости от того, что характеризуют экстенсивные показатели, их называют:

  • показатели удельного веса части в целом, например, удельный вес гриппа среди всех заболеваний;

  • показатели распределения или структуры (распределение всей совокупности зарегистрированных врачом заболеваний за год на отдельные заболевания).

Показатель частоты, уровня, распространенности процессов, явлений, совершающихся в определенной среде. Он показывает, как часто встречается изучаемое явление в среде, которая его продуцирует (заболеваемость, смертность, рождаемость и т.д.).

Интенсивные показатели используются как для сравнения, сопоставления динамики частоты изучаемого явления во времени, так и для сравнения, сопоставления частоты этого же явления в один и тот же промежуток времени, но в различных учреждениях, на различных территориях и т.д.

Для расчета интенсивного показателя необходимо иметь данные об абсолютном размере явления и среды, его продуцирующей. Абсолютное число, характеризующее размер явления, делится на абсолютное число, показывающее размер среды, внутри которой произошло данное явление, и умножается на 100, 1000 и т.д. Таким образом, способ получения интенсивного показателя выглядит следующим образом:

Таким образом, для расчета интенсивного показателя всегда нужны две статистические совокупности (совокупность № 1 — явление, совокупность № 2 — среда), причем изменение размера среды может повлечь за собой изменение размера явления.

Множитель (основание) зависит от распространенности явления в среде — чем реже оно встречается, тем больше множитель. В практике для вычисления некоторых интенсивных показателей множители (основания) являются общепринятыми (так, например, показатели заболеваемости с временной утратой трудоспособности рассчитываются на 100 работающих или учащихся, показатели летальности, частоты осложнений и рецидивов заболеваний — на 100 больных, демографические показатели и многие показатели заболеваемости — на 1000, 100 000 населения).

Показатель соотношения

Характеризует соотношение между двумя не связанными между собой совокупностями (обеспеченность населения койками, врачами, дошкольными учреждениями, соотношение родов и абортов, соотношение врачей и медицинских сестер и др.).

Для получения этого показателя нужны две совокупности (совокупность № 1 и № 2). Абсолютная величина, характеризующая одну совокупность (совокупность № 1) делится на абсолютную величину, характеризующую другую, с ней не связанную совокупность (совокупность № 2) и умножается на множитель* (100, 1000, 10 000 и т.д.):

Показатель соотношения = совокупность №1 / совокупность №2 х 10 000

* При расчете показателя соотношения можно не учитывать множитель, например, определяя соотношение родов и абортов

Показатель наглядности

Применяется для анализа однородных чисел и используется когда необходимо "уйти" от показа истинных величин (абсолютных чисел, относительных и средних величин). Как правило, эти величины представлены в динамике. Для вычисления показателей наглядности одна из сравниваемых величин принимается за 100% (обычно, это исходная величина), а остальные рассчитываются в процентном отношении к ней. Особенно их целесообразно использовать, когда исследователь проводит сравнительный анализ одних и тех же показателей, но в разное время или на разных территориях.

Расчет средних величин

Вариационный ряд - это числовые значения признака, представленные в ранговом порядке с соответствующими этим значениям частотами. Основные обозначения вариационного ряда

V — варианта, отдельное числовое выражение изучаемого признака;

р — частота ("вес") варианты, число ее повторений в вариационном ряду;

n — общее число наблюдений (т.е. сумма всех частот, n = Σр);

Vmax и Vmin — крайние варианты, ограничивающие вариационный ряд (лимиты ряда);

А — амплитуда ряда (т.е. разность между максимальной и минимальной вариантами,

А = Vmax — Vmin)

  1. Виды вариаций

  2. а) простой — это ряд, в котором каждая вариата встречается по одному разу (р=1);

  3. 6) взвешенный — ряд, в котором отдельные варианты встречаются неоднократно (с разной частотой).

  4. Назначение вариационного ряда

  5. Вариационный ряд необходим для определения средней величины (М) и критериев разнообразия признака, подлежащего изучению (σ, Сv).

  6. Средняя величина — это обобщающая характеристика размера изучаемого признака. Она позволяет одним числом количественно охарактеризовать качественно однородную совокупность.

  7. Применение средних величин

    • для оценки состояния здоровья — например, параметров физического развития (средний рост, средняя масса тела, среднее значение жизненной емкости легких и др.), соматических показателей (средний уровень сахара в крови, средняя величина пульса, средняя СОЭ и др.);

    • для оценки организации работы лечебно-профилактических и санитарно-противоэпидемических учреждений, а также деятельности отдельных врачей и других медицинских работников (средняя длительность пребывания больного на койке, среднее число посещений на 1 ч приема в поликлинике и др.);

    • для оценки состояния окружающей среды.

  8. Методика расчета простой средней арифметической

    • Суммировать варианты:

V1+V2+V3+...+Vn = Σ V;

    • Сумму вариант разделить на общее число наблюдений: М = Σ V / n

  1. Методика расчета взвешенной средней арифметической (табл. 1)

    • Получить произведение каждой варианты на ее частоту — Vp

    • Найти сумму произведений вариант на частоты:

V1p1 + V2p2+ V3p3 +...+ Vnpn = Σ Vp

    • Полученную сумму разделить на общее число наблюдений: М = Σ Vp / n

  1. Методика расчета среднеквадратического отклонения

    • Найти отклонение (разность) каждой варианты от среднеарифметической величины ряда (d = V — М);

    • Возвести каждое из этих отклонений в квадрат (d2);

    • Получить произведение квадрата каждого отклонения на частоту (d2р);

    • Найти сумму этих отклонений:

d21p1 + d22p2 + d23p3 +...+ d2npn = Σ d2р;

    • Полученную сумму разделить на общее число наблюдений (при n < 30 в знаменателе n-1): Σ d2р / n

    • Извлечь квадратный корень: σ = √Σ d2р / n

    • при n < 30 σ = √Σ d2р / n-1

  1. Применение среднеквадратического отклонения

    • для суждения о колеблемости вариационных рядов и сравнительной оценки типичности (представительности) средних арифметических величин. Это необходимо в дифференциальной диагностике при определении устойчивости признаков;

    • для реконструкции вариационного ряда, т.е. восстановления его частотной характеристики на основе правила "трех сигм". В интервале М±3σ находится 99,7% всех вариант ряда, в интервале М±2σ — 95,5% и в интервале М±1σ — 68,3% вариант ряда;

    • для выявления "выскакивающих" вариант (при сопоставлении реального и реконструированного вариационных рядов);

    • для определения параметров нормы и патологии с помощью сигмальных оценок;

    • для расчета коэффициента вариации;

    • для расчета средней ошибки средней арифметической величины.

  • Коэффициент вариации (Сv) - это процентное отношение среднеквадратического отклонения к среднеарифметической величине: Сv = σ / M x 100%. Коэффициент вариации — это относительная мера колеблемости вариационного ряда.

  • Применение коэффициента вариации

    • для оценки разнообразия каждого конкретного вариационного ряда и, соответственно, суждения о типичности отдельной средней (т.е. ее способности быть полноценной обобщающей характеристикой данного ряда). При Сv <10% разнообразие ряда считается слабым, при Сv от 10 до 20% — средним, а при Сv>20% — сильным. Сильное разнообразие ряда свидетельствует о малой представительности (типичности) соответствующей средней величины и, следовательно, о нецелесообразности ее использования в практических целях;

    • для сравнительной оценки разнообразия (колеблемости) разноименных вариационных рядов и выявления более и менее стабильных признаков, что имеет значение в дифференциальной диагностике.

Динамический ряд

В практической и научно-практической деятельности врачу нередко приходится анализировать происходящие во времени изменения в состоянии здоровья отдельных групп населения, в деятельности медицинских учреждений, в экспериментальных исследованиях. Выявление основной тенденции изучаемого явления вне влияния "случайных" факторов позволяет определять закономерности изменений явления и на этой основе осуществлять прогнозирование.

Динамический ряд — ряд однородных величин, характеризующих изменения явления во времени

  1. Область применения.

    • для характеристики изменений состояния здоровья населения в целом или отдельных его групп, а также деятельности учреждений здравоохранения и изменения их во времени;

    • для установления тенденций и закономерностей изменений явлений, углубленного анализа динамического процесса (скоростей, временных характеристик текущего и стратегического планирования;

    • для прогнозирования уровней явлений общественного здоровья и здравоохранения

  2. Числа (уровни) динамического ряда. Динамические ряды могут быть представлены только однородными величинами: абсолютными, относительными или средними величинами

  3. Типы динамических рядов

    • Моментный ряд — характеризует изменение значений явления на определенную дату (момент).

    • Интервальный ряд — характеризует изменения значений явления за определенный период (интервал времени). Применяется в случае необходимости анализа процесса в различные дробные периоды

  4. Приемы для установления тенденций или закономерностей.

    • Преобразование ряда — применяется для большей наглядности изменений изучаемых явлений. Одно число ряда принимается за 1, чаще всего за 100 или 1000, и, по отношению к данному числу ряда, рассчитываются остальные.

    • Выравнивание ряда — применяется при скачкообразных изменениях (колебаниях) уровней ряда. Цель выравнивания — устранить влияние случайных факторов и выявить тенденцию изменений значений явлений (или признаков), а в дальнейшем установить закономерности этих изменений

  5. Способы выравнивания динамического ряда. Способами выравнивания динамического ряда являются: укрупнение периодов, расчет групповой средней, расчет скользящей средней, метод наименьших квадратов

    • Укрупнение периодов — применяется, когда явление в интервальном ряду выражено в абсолютных величинах, уровни которых суммируются по более крупным периодам. Применение возможно при кратном числе периодов.

    • Вычисление групповой средней — применяется, когда уровни интервального ряда выражены в абсолютных, средних или относительных величинах, которые суммируются, а затем делятся на число слагаемых. Способ применяется при кратном числе периодов.

    • Расчет скользящей средней — применяется, когда уровни явлений любого ряда выражены в абсолютных, средних или относительных величинах. Данный метод применяется при наличии некратного числа временных периодов (7, 11, 13, 17, 19) достаточно длинного динамического ряда. Путем вычисления групповой средней значений 3 периодов, а в последующем переходя на определенный уровень и два соседних с ним, осуществляется "скольжение" по периодам. Каждый уровень заменяется на среднюю величину (из данного уровня и двух соседних с ним). Данный метод применяется, когда не требуется особой точности, когда имеется достаточно длинный ряд и можно пренебречь потерей двух значений ряда; в случаях, когда изучается развитие явления под влиянием одного или двух факторов.

    • Метод наименьших квадратов применяется для более точной количественной оценки динамики изучаемого явления. Этим способом получаются такие выровненные значения уровней ряда, квадраты отклонений которых от истинных (эмпирических) показателей дают наименьшую сумму.

Наиболее простой и часто встречающейся в практике является линейная зависимость, описываемая уравнением:

Характеристики

Тип файла
Документ
Размер
1,5 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее