86233 (612692), страница 5

Файл №612692 86233 (Статистический анализ банковской деятельности. Исследование моделей оценки кредитных рисков) 5 страница86233 (612692) страница 52016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

Построим регрессию Y на факторы Z1-Z20 по методу линейной регрессии (табл.14.)

Таблица 14. Оценка линейной вероятностной модели

В нашем случае прогнозные значения Yf указывают на вероятность возврата (невозврата) кредита. Построим график прогнозных значений (рис.3.)

Рис.3. график прогнозных значений

Можно видеть, что прогнозные значения могут находиться вне интервала [0,1] – это главный недостаток LP модели. Поэтому приступим к построению моделей, лишенных этих недостатков.

2.8. Логистическая регрессия

Будем считать, что событие в данных фиксируется дихотомической переменной (0 не произошло событие, 1 - произошло). Для построения модели предсказания можно было бы построить, к примеру, линейное регрессионное уравнение с зависимой дихотомической переменной Y, но оно будет не адекватно поставленной задаче, так как в классическом уравнении регрессии предполагается, что Y - непрерывная переменная. С этой целью рассматривается логистическая регрессия. Ее целью является построение модели прогноза вероятности события {Y=1} в зависимости от независимых переменных X1,…,Xp. Иначе эта связь может быть выражена в виде зависимости P{Y=1|X}=f(X)

Логистическая регрессия выражает эту связь в виде формулы

, где Z=B0+B1X1+…+BpXp

Название "логистическая регрессия" происходит от названия логистического распределения, имеющего функцию распределения . Таким образом, модель, представленная этим видом регрессии, по сути, является функцией распределения этого закона, в которой в качестве аргумента используется линейная комбинация независимых переменных [3].

Отношение вероятности того, что событие произойдет к вероятности того, что оно не произойдет P/(1-P) называется отношением шансов.

С этим отношением связано еще одно представление логистической регрессии, получаемое за счет непосредственного задания зависимой переменной в виде Z=Ln(P/(1-P)), где P=P{Y=1|X1,…,Xp}. Переменная Z называется логитом. По сути дела, логистическая регрессия определяется уравнением регрессии Z=B0+B1X1+…+BpXp.

В связи с этим отношение шансов может быть записано в следующем виде

P/(1-P)= .

Отсюда получается, что, если модель верна, при независимых X1,…,Xp изменение Xk на единицу вызывает изменение отношения шансов в раз.

Механизм решения такого уравнения можно представить следующим образом

  1. Получаются агрегированные данные по переменным X, в которых для каждой группы, характеризуемой значениями Xj= подсчитывается доля объектов, соответствующих событию {Y=1}. Эта доля является оценкой вероятности . В соответствии с этим, для каждой группы получается значение логита Zj.

  2. На агрегированных данных оцениваются коэффициенты уравнения Z=B0+B1X1+…+BpXp. К сожалению, дисперсия Z здесь зависит от значений X, поэтому при использовании логита применяется специальная техника оценки коэффициентов - взвешенной регрессии.

Еще одна особенность состоит в том, что в реальных данных очень часто группы по X оказываются однородными по Y, поэтому оценки оказываются равными нулю или единице. Таким образом, оценка логита для них не определена (для этих значений ).

Построим модель пробит для наших данных. Оценивание в SPSS дает результаты (табл.15.), где приведены коэффициенты оценивания.

Таблица 15. Оценка логит-модели

B

Step 1(a)

schet

,585

srok

-,139

histor

,388

naznah

,033

zaim

-,181

chares

,239

timrab

,161

vznos

-,299

famil

,264

poruchit

,360

timelive

-,005

garonti

-,191

vozras

,068

inizaimi

,315

kvartir

,318

kolzaim

-,240

proff

,021

rodstve

-,153

telefon

,312

inosmest

1,225

Constant

-4,227

На основе модели логистической регрессии можно строить предсказание произойдет или не произойдет событие {Y=1}. Правило предсказания, по умолчанию заложенное в процедуру LOGISTIC REGRESSION устроено по следующему принципу: если >0.5 считаем, что событие произойдет; 0.5, считаем, что событие не произойдет (табл.16).

Таблица 16. Таблица прогнозов

Так в нашем примере результаты прогноза можно оформить в виде таблицы 17.

Таблица 17. Прогнозное качество модели

Логит модель

Y=0

Y=1

Всего

всего по выборке

300

700

1000

прогноз

226

774

1000

правильно

150

624

774

неправильно

150

76

226

% правильно

50,0%

89,1%

77,4%

% неправильно

50,0%

10,9%

22,6%

Результаты подобной классификации превосходят результаты кластерного и дискриминантного анализа.

Заключение

В результате анализа прозрачности методик для оценки кредитных рисков сделаны следующие выводы

  • В настоящее время коммерческие банки испытывают сложности в приобретении (разработке) точных, робастных и прозрачных мето­дик и соответствующих программных средств для оценки кредитных рисков физических и юридических лиц

  • Предлагаемые на рынке западные скоринговые методики и соответ­ствующие программные средства для оценки кредитных рисков физи­ческих и юридических лиц и решения задачи резервирования имеют низкие точность, робастность и прозрачность

  • Необходима разработка более перспективных моделей и соответству­ющих программных средств для оценки кредитных рисков физиче­ских и юридических лиц, которые обладают существенными преиму­ществами по точности, робастности, прозрачности и возможности автоматизации анализа, оценки и управления рисками

  • Среди представленных методик логит-модель обладает наилучшими прогнозными свойствами.

В России наличие национального кредитного бюро могло бы суще­ственно облегчить переход на принципы Базеля П. А в его отсутствие крайне затруднительно сформировать базу по оценке кредитных рисков отдельных заемщиков. Соответственно будет сложно выйти за рамки стандартизованного подхода в рамках Базеля II, тогда как далеко не все виды рисков могут быть оценены рейтинговыми агентствами.

Развивающиеся страны также высказали мнение, что применение рейтинговых методик при оценке риска активов в условиях неразвитой рыночной культуры может привести не к повышению качества оценки, а к элементарной продаже рейтингов. Базельский комитет признает, что если новые рейтинги предназначаются для банков в целях регули­рования, а не для инвесторов, то их качество может ухудшиться.

В связи с этим призывают отказаться от стандартизованного подхода и заменить его «базовым подходом». Ключевым отличием «базового подхода» является то, что по отноше­нию к кредитам других государств национальные органы банковского надзора наделяются правом самостоятельно определять степень рис­ка. В России рейтинговым агентствам будет крайне сложно определить категории риска для каждого отдельного заемщика, учитывая недостаточность данных по кредитным историям.

Применение положений Соглашения «Базель II» может привести к дисбалансам на различных сегментах финансовых рынков. Так, новые положения стимулируют рост рынков недвижимости, поскольку они предъявляют более низкие требования к достаточности собственного капитала по кредитам, обеспеченным залогом недвижимости. Базель II также устанавливает более низкие уровни риска по кредитам под за­лог и для мелкого бизнеса. Соответственно стимулируются финансовые услуги розничного банковского бизнеса. С другой стороны, банкам, специализирующимся на секьюритизации активов, по всей видимости, придется повысить размеры достаточного капитала.

Новые положения повысят издержки банков. Стремясь получить одобрение надзорных органов на использование внутренних методик оценки риска, банки будут осуществлять значительные инвестиции в разработку этих методик, создание соответствующих моделей, сбор ин­формации.

В условиях банковской системы России далеко не каждый банк мо­жет позволить себе осуществить подобные инвестиции. В России при недостаточном опыте функционирования банковской системы в рыночном режиме банкам крайне сложно само­стоятельно определять уровни рисков. В соответствии с критериями Соглашения «Базель II» они должны располагать данными за большой промежуток времени о движении практически каждого кредита, что­бы быть в состоянии рассчитать вероятность банкротства заемщика и связанных с ним потерь для банка. Разумеется, России необходи­мо практически заново формировать сведения о платежеспособности заемщиков после финансового кризиса.

Основные положения Базеля II ориентированы на крупные банки промышленно развитых стран, для которых применение новых подхо­дов действительно может принести существенную выгоду.

Вопрос об эффективной интеграции в мировую финансовую систе­му стоит уже сейчас, поэтому в той или иной степени ориентировать­ся на новые стандарты Базельского комитета по банковскому надзору будет необходимо. Крупным банкам имеет смысл постепенно занять­ся разработкой внутренних методик оценки риска, и это связано да­же не столько с необходимостью следования внешним международным нормам, сколько с упомянутой важностью правильной оценки прини­маемых ими на себя рисков. Для мелких и средних банков создание подобных систем ни в настоящее время, ни в обозримом будущем непо­сильно. Судя по положениям стратегии развития банковской системы, их количество будет постепенно сокращаться, поскольку Центральный банк РФ нацелен на консолидацию банковской системы. Что касается положений Базеля II, то на первом этапе для всех российских банков, очевидно, будет принят стандартизованный подход, который поднимет все проблемы, связанные с кредитными рейтингами. Решению данной проблемы мог бы помочь уже начавшийся процесс формирования бюро кредитных историй.

Динамичное развитие рынка банковских услуг и ожидаемое вступ­ление в ВТО уже сейчас усиливают конкурентную среду в российской банковской системе. Иностранные банки стремятся проникнуть на рос­сийский рынок и собираются увеличивать свои инвестиции на нем.

Характеристики

Тип файла
Документ
Размер
45,65 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее