86233 (612692), страница 2

Файл №612692 86233 (Статистический анализ банковской деятельности. Исследование моделей оценки кредитных рисков) 2 страница86233 (612692) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Кредитный бизнес связан с риском. Условия кредитной деятельно­сти изменяются, изменяется также допустимый уровень риска. Кредит­ная деятельность адаптируется к условиям развивающейся экономики страны и уровню жизни ее населения.

Большое значение для обеспечения устойчивого функционирования банка имеют методы количественной оценки и анализа кредитного рис­ка. Цена за риск должна максимально точно учитывать величину риска каждого кредита. Кроме средней величины риска, определяемой по ста­тистике предыдущей деятельности, банк должен знать количественную оценку и составляющие риска для каждого кредита.

Каждый банк разрабатывает свою модель риска для количественной оценки и анализа риска кредитов с учетом общих рекомендаций Базельского комитета по банковскому надзору. Чем выше точность оцен­ки риска кредитов, тем меньше потери банка, меньше процент за кре­дит и выше конкурентоспособность банка. От повышения точности и прозрачности методик выигрывает все общество в целом. Создание эф­фективной модели риска и оптимальное управление кредитным риском возможны только на основе постоянного количественного анализа статистической информации об успехах кредитов.

Существуют различные подходы к определению кредитного риска частного заемщика, начиная с субъективных оценок специалистов банка и заканчивая автоматизированными системами оценки риска. Ми­ровой опыт показывает, что основанные на математических моделях системы являются более действенными и надежными. В целях построения модели кредитного риска сначала производится выборка клиентов кредитной организации, о которых уже известно, хорошими заемщиками они себя зарекомендовали или нет. Такая вы­борка может варьироваться от нескольких тысяч до сотен тысяч, что не является проблемой на Западе, где кредитный портфель компаний может состоять из десятков миллионов клиентов. Выборка содержит информацию по двум группам кредитов, имевшим место в деятельно­сти банка: «хорошим» и «плохим» (проблемным или невозвращенным).

Ниже выполнен анализ прозрачности скоринговых методик оценки кредитных рисков

    1. Характеристики физического лица. Структура данных

Кредиты физических лиц описываются 20 признаками, каждый их которых имеет градации (Таблица 1.)

Таблица 1. Описание кредита физического лица

Номер признака

Наименование признака

Обозначение

Число градаций

0

Успешность кредита

Y

2

1

Сумма счета в банке

Z1

4

2

Срок займа

Z2

10

3

Кредитная история

Z3

5

4

Назначение займа

Z4

11

5

Сумма займа

Z5

10

6

Счета по ценным бумагам

Z6

5

7

Продолжительность работы

Z7

5

8

Взнос в частичное погашение

Z8

4

9

Семейное положение и пол

Z9

4

10

Совместные обязательства или поручитель

Z10

3

11

Время проживания в данной местности

Z11

4

12

Вид гарантии

Z12

4

13

Возраст

Z13

5

14

Наличие других займов

Z14

3

15

Наличие жилой площади

Z15

3

16

Количество займов с банком

Z16

4

17

Профессия

Z17

4

18

Число родственников на иждивении

Z18

2

19

Наличие телефона

Z19

2

20

Иностранный или местный житель

Z20

2

Таблица данных имеет вид

Таблица2. Структура статистических данных

В работе используются реальные данные. Всего 1000 наблюдений. 700 заемщиков не вернули кредит «1», 300 – вернули «0».

Глава 2. Статистические и эконометрические методы оценки риска

В банках используются, главным образом, следующие методики:

  • Скоринговые методики;

  • Кластерный анализ;

  • Дискриминантный анализ;

  • Дерево классификаций;

  • Нейронные сети;

  • Технологии Data mining;

  • Линейная вероятностная регрессионная модель;

  • Logit-анализ;

Приступим к описанию этих методик.

2.1. Скоринговые методики

Скоринг кредитов физических лиц представляет собой методику оценки качества заемщика, основанную на различных характеристиках клиентов, таких как доход, возраст, семейное положение, профессия и др. В результате анализа переменных получают интегрированный показатель, который оценивает степень кредитоспособности заемщика по ранговой шкале: «хороший» или «плохой». Дается ответ на вопрос, вернет заемщик кредит или нет? Качество заемщика оценивается опре­деленными баллами, отражающими степень его кредитоспособности. В зависимости от балльной оценки принимается решение о выдаче кре­дита и его лимитах [4].

Привлечение банками для оценки кредитоспособности квалифици­рованных специалистов имеет несколько недостатков: во-первых, их мнение все же субъективно; во-вторых, люди не могут оперативно об­рабатывать большие объемы информации; в-третьих, оплата хороших специалистов требует значительных расходов. Поэтому банки все боль­ше интересуются такими системами оценки риска, которые позволили бы минимизировать участие экспертов и влияние человеческого фак­тора на принятие решений.

Для оценки кредитного риска производится анализ кредитоспособ­ности заемщика, под которой понимается его способность полностью и в срок рассчитаться по своим долговым обязательствам. В соответ­ствии с таким определением основная задача скоринга заключается не только в том, чтобы выяснить, в состоянии клиент выплатить кредит или нет, но и в степени надежности и обязательности клиента.

Скоринг представляет собой математическую или статистическую модель, с помощью которой на основе кредитной истории «прошлых» клиентов банк пытается определить, насколько велика вероятность, что потенциальный заемщик вернет кредит в срок. Скоринг является методом классификации всей интересующей нас популяции на различ­ные группы, когда нам неизвестна характеристика, которая разделяет эти группы, но зато известны другие характеристики.

В западной банковской системе, когда человек обращается за кре­дитом, банк располагает следующей информацией для анализа: анкетой, которую заполняет заемщик; информацией на данного заемщика из кредитного бюро, в котором хранится кредитная история взрослого населения страны; данными движения по счетам, если речь идет о клиенте банка.

Кредитные аналитики оперируют следующими понятиями: «харак­теристики-признаки» клиентов и «градации-значения», которые принимает признак. В анкете клиента характеристиками-признаками яв­ляются вопросы анкеты (возраст, семейное положение, профессия), а градациями-значениями— ответы на эти вопросы. В упрощенном виде скоринговая модель дает взвешенную сумму определенных характери­стик. В результате получают интегральный показатель (score); чем он выше, тем выше надежность клиента (табл.3.). Интегральный показатель каж­дого клиента сравнивается с неким заданным уровнем показателя. Ес­ли показатель выше этого уровня, то выдается кредит, если ниже этой линии, — нет.

Сложность в том, какие характеристики-признаки следует вклю­чать в модель и какие весовые коэффициенты должны им соответ­ствовать. Философия скоринга заключается не в поиске объяснений, почему этот человек не платит. Скоринг использует характеристики, которые наиболее тесно связаны с ненадежностью клиента. Неизвест­но, вернет ли данный заемщик кредит, но известно, что в прошлом люди этого возраста, этой профессии, с таким уровнем образования и числом иждивенцев кредит не возвращали (или возвращали).

Таблица 3. Скоринговая карта

Показатель

Значение

Баллы

Возраст

20 - 25

100

26 - 30

107

31 - 40

123

…………

…………..

Доход

1000 - 3000

130

3001 - 5000

145

5001 - 6000

160

…………

…………..

Среди преимуществ скоринговых систем западные банкиры указы­вают в первую очередь снижение уровня невозврата кредита. Далее отмечаются быстрота и беспристрастность в принятии решений, воз­можность эффективного управления кредитным портфелем, определе­ние оптимального соотношения между доходностью кредитных опера­ций и уровнем риска.

2.2. Кластерный анализ

Методы кластерного анализа позволяют разбить изучаемую совокупность объектов на группы однородных в некотором смысле объектов, называемых кластерами или классами. Иерархические и параллельные кластер-процедуры практически реализуемы лишь в задачах классификации не более нескольких десятков наблюдений. К решению задач с большим числом наблюдений (как в наших целях) применяют последовательные кластер-процедуры - это итерационные алгоритмы, на каждом шаге которых используется одно наблюдение (или небольшая часть исходных наблюдений) и результаты разбиения на предыдущем шаге. Идею этих процедур реализована в «SPSS» методе средних («K-Means Clustering») с заранее заданным числом классов.

Алгоритм заключается в следующем: выбирается заданное число k- точек и на первом шаге эти точки рассматриваются как "центры" кластеров. Каждому кластеру соответствует один центр. Объекты распределяются по кластерам по такому принципу: каждый объект относится к кластеру с ближайшим к этому объекту центром. Таким образом, все объекты распределились по k кластерам. Затем заново вычисляются центры этих кластеров, которыми после этого момента считаются покоординатные средние кластеров. После этого опять перераспределяются объекты. Вычисление центров и перераспределение объектов происходит до тех пор, пока не стабилизируются центры.

Характеристики

Тип файла
Документ
Размер
45,65 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее