86128 (612656), страница 2
Текст из файла (страница 2)
1.2. Различные подходы к обучению младших школьников решению текстовых задач
Вопрос о том, как научить детей устанавливать связи между данными и искомыми в текстовой задаче и в соответствии с этим выбрать, а затем выполнить арифметические действия, решается в методической науке по-разному. Тем не менее, все многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать с точки зрения двух принципиально отличающихся друг от друга подходов [7, 204].
Один подход нацелен на формирование у учащихся умения решать задачи определенных типов и видов (методисты, следующие этому подходу: Эрдниев П.М., Белошистая А.В, Моро М.И., Бантова М.А., Бельтюкова Г.Б. и др.)
Дети сначала учатся решать простые задачи а затем составные, включающие в себя различные сочетания простых задач.
Процесс обучения решению простых задач является одновременно процессом формирования математических понятий. В связи с этим, в зависимости от тех понятий, которые рассматриваются в курсе математики начальных классов, простые задачи делятся на три группы:
-
первая группа включает простые задачи, при решении которых дети усваивают конкретный смысл каждого из арифметических действий (сложение, вычитание, умножение, деление);
-
вторая группа включает простые задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий. Это простые задачи на нахождение неизвестного компонента (8 видов);
-
третья группа - простые задачи, при решении которых раскрываются понятия разностного сравнения (6 видов) и кратного отношения (6 видов);
Научить детей решать задачи — значит, научить их устанавливать связи между данными и искомым и в соответствии с этим выбирать, а затем и выполнять арифметические действия.
Центральным звеном в умении решать задачи, которым должны овладеть учащиеся, является усвоение связей между данными и искомым. От того, насколько хорошо усвоены учащимися эти связи, зависит их умение решать задачи. Учитывая это, в начальных классах ведется работа над группами задач, решение которых основывается на одних и тех же связях между данными и искомым, а отличаются они конкретным содержанием и числовыми данными. Группы таких задач будем называть задачами одного вида. Работа над задачами не должна сводиться к натаскиванию учащихся на решение задач сначала одного вида, затем другого и т. д. Главная ее цель — научить детей осознанно устанавливать определенные связи между данными и искомым в разных жизненных ситуациях, предусматривая постепенное их усложнение. Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач каждого вида такие ступени:
1)подготовительную работу к решению задач;
2)ознакомление с решением задач;
3)закрепление умения решать задачи.
Составная задача включает в себя ряд простых задач, связанных между собой так, что искомые одних простых задач служат данными других. Решение составной задачи сводится к расчленению ее на ряд простых задач и к последовательному их решению. Таким образом, для решения составной задачи надо установить систему связей между данными и искомым, в соответствии с которой выбрать, а затем выполнить арифметические действия.
Методика работы с каждым новым видом составных задач, согласно данному подходу, ведется также в соответствии с тремя ступенями: подготовительная, ознакомительная, закрепление. Процесс решения каждой составной задачи осуществляется поэтапно:
1.Ознакомление с содержанием задачи.
2.Поиск решения задачи.
3.Составление плана решения.
4.Запись решения и ответа.
5.Проверка решения задачи.
Сначала задачу читает учитель или кто-то из учеников (первое прочтение). Затем учащимся предлагается прочитать задачу про себя, так как не все могут сосредоточиться на ее содержании, когда один из учеников читает вслух (второе прочтение).
-Кто может повторить задачу? (Дети воспроизводят текст по памяти - третье прочтение).
-Выделите условие и вопрос задачи (четвертое прочтении). Фактически опять воспроизводится текст.
-Что нам известно? (пятое прочтение, ученики воспроизводит условие).
-Что неизвестно? (Воспроизводится вопрос.)
Как видно, действия школьников сводятся к тому, что они пять раз воспроизводят текст: сначала читают вслух, затем про себя, потом по частям (условие и вопрос), выделяют известное и неизвестное.
Результатом этой работы, должно явиться осознание текста, т.е. представление той ситуации, которая нашла в нем отражение. Но практика показывает, что многократное воспроизведение текст задачи не всегда эффективно для его осознания. Ученики читают задачу, воспроизводят ее, выделяют условие и вопрос, утвердительно отвечают на вопрос: «Понял ли ты задачу?», но самостоятельно приступить к ее решению не могут.
В этом случае учитель пытается помочь детям, дополняя фронтальную беседу выполнением краткой записи.
Используя такую запись, он организует целенаправленный поиск решения, применяя один из способов разбора задачи: синтетический или аналитический.
Используя при решении каждой задачи аналитический или синтетический способ разбора, учитель в конечном итоге добивается, что дети сами задают себе эти вопросы в определенной последовательности и выполняют рассуждения, связанные с решением задачи.
Основным методом обучения решению составных задач при этом подходе является показ способов решения определенных видов задач и значительная, порой изнурительная практика по овладению ими, т.е. используется объяснительно-иллюстративный и репродуктивный методы обучения (классификация И.Я. Лернера - М.Н.Cкаткина). Поэтому многие учащиеся решают задачи лишь по образцу.
Цель другого подхода, (по мнению его сторонников: Истоминой Н.Б., Фридмана Л.М., Александровой Э.А., Аргинской И.И. и др.) - научить детей выполнять семантический, логический и математический анализ текстовых задач, выявлять взаимосвязи между условием и вопросом, данными и искомыми и представлять эти связи в виде схематических и символических моделей.
Процесс решения задач (простых и составных) рассматривается как переход от словесной модели к модели математической или схематической. В основе осуществления этого перехода лежит семантический анализ текста (установление особенности словесной формулировки этих задач, выявление, какими языковыми средствами выражаются в них отдельные элементы, как можно на основе анализа словесной формулировки задачи распознать отдельные значения величин и их виды, а так же соотношения, связывающие значения величин и т.д.) [15, 89] и выделение в нем математических понятий и отношений (математический анализ текста). Естественно, учащиеся должны быть подготовлены к этой деятельности. Отсюда следует, что знакомству младших школьников с текстовой задачей должна предшествовать специальная работа по формированию математических понятий и отношений, которые они будут использовать при решении текстовых задач. Так как процесс решения задач связан с выделением посылок и построением умозаключений, необходимо также сформировать у младших школьников (до знакомства с задачей) те логические приемы мышления (анализ и синтез, сравнение, обобщение), которые обеспечивали бы их мыслительную деятельность в процессе решения задач.
Таким образом, готовность школьников к знакомству с текстовой задачей предполагает сформированность:
-
умения описывать предметные ситуации и переводить их на язык схем и математических символов;
-
представлений о смысле действий сложения и вычитания, и взаимосвязи;
-
понятий «увеличить (уменьшить) на», разностного сравнения;
-
навыков чтения;
-
умения переводить текстовые ситуации в предметные и схематические модели и обратно и др.
Именно второй подход позволяет в большей степени формировать общее умение решать текстовые задачи.
Чтобы научить ребёнка решать текстовые задачи, учитель должен в разумном сочетании использовать оба подхода. А всё многообразие методических рекомендаций, связанных с обучением младших школьников решению задач, целесообразно рассматривать преимущественно с точки зрения второго подхода.
Глава 2. Последовательность изучения понятия задачи и её решения в начальных классах
2.1 Подготовительный этап к введению понятия «задача»
Перед ознакомлением с понятием «задача» в начальной школе необходимо провести подготовительную работу. Каждый методист представляет её по своему, рассмотрим некоторые подходы.
Методисты Бантова М.А., Бельтюкова Г.В. [2, 175] предлагают на этой первой ступени обучения решению задач того или другого вида создать у учащихся готовность к выбору арифметических действий при решении соответствующих задач: они должны усвоить знание тех связей, на основе которых выбираются арифметические действия, знание объектов и жизненных ситуаций, о которых говорится в задачах.
До решения простых задач определённого вида ученики усваивают знания о связях операций над множествами с арифметическими действиями, т. е. конкретный смысл арифметических действий. Например, операция объединения непересекающихся множеств связана с действием сложения. Позже школьники узнают, что отношения «больше» и «меньше» (на несколько единиц и в несколько раз) связаны с арифметическими действиями, т. е. конкретный смысл выражений «больше на . . . », «больше в . . . раз», «меньше на . . . », «меньше в . . . раз». Они овладевают взаимосвязью между компонентами и результатами арифметических действий, изучают правила нахождения одного из компонентов арифметических действий по известным результату и другому компоненту.
При ознакомлении с решением первых простых задач ученики должны усвоить понятия и термины, относящиеся к самой задаче и ее решению (задача, условие задачи, вопрос задачи, решение задачи, ответ на вопрос задачи).
При решении составных задач ученики должны уметь устанавливать не одну связь, а систему связей, т. е. устанавливать несколько связей, выстраивая их в определенном порядке. Подготовкой к решению составных задач будет не только усвоение учащимися соответствующих связей, но и умение вычленять систему связей, иначе говоря, разбивать составную задачу на ряд простых, последовательное решение которых и будет решением составной задачи. Важно на подготовительной ступени знакомить детей с объектами, о которых говорится в задачах (например, с величинами), а также с соответствующими ситуациями, описанными в задачах, организуя специальные наблюдения жизненных ситуаций.
Вся подготовительная работа сводится к выполнению учащимися специальных упражнений, помогающих усвоить им знание названных связей и ознакомиться с объектами и жизненными ситуациями, отраженными в задачах. При работе над каждым отдельным видом задач требуется своя специальная подготовительная работа.
Истомина Н.Б. [7] предлагает до знакомства младших школьников с понятием «задача» провести специальную работу способствующую приобретению учащимися определенного опыта в соотнесении предметных, текстовых схематических и символических моделей, который они смогут использовать для интерпретации текстовой модели.
Готовность школьников к знакомству с текстовой задачей предполагает сформированность:
-
навыков чтения;
-
представлений о смысле действий сложения и вычитания, их взаимосвязи, понятий «увеличить (уменьшить) на а», разностного сравнения;
-
основных мыслительных операций: анализ и синтез, сравнение;
-
умения описывать предметные ситуации и переводить их на язык схем и математических символов;
-
умения чертить, складывать и вычитать отрезки;
-
умения переводить текстовые ситуации в различные модели и обратно.
Например, детям предлагается практические задания [8, 154]:
Положите 5 морковок, затем еще 2. Сколько всего морковок вы положили?
Ответ на вопрос (подчеркнем, что данное задание учитель не называет задачей) может быть получен как путем пересчитывания морковок (начиная с первой) так и путем присчитывания: в этом случае 5 рассматривается как количественное число, к которому присчитываются две единицы. Перевод данной ситуации на язык арифметических действий - высокий уровень оперирования числами. Работа по формированию умения переводить реальную ситуацию на язык математических знаков сводится к следующему: учитель акцентирует внимание учащихся на том, что сначала было 5 морковок.
-Каким математическим знаком (цифрой) это можно обозначить? (5.) К ним добавили 2 морковки.
-
5
2
Каким знаком можно это обозначить? На доске и в кассах цифр появляется запись:Теперь надо разъяснить смысл знака «+». (В математике применяется особый знак для обозначения увеличения числа предметов.) Учитель показывает место этого знака в записи, также место числа 7 и знака «=».
Знакомство школьников с числовым равенством требует подробных разъяснений. Здесь не следует полагаться на тот опыт, который дети в том или ином виде приобрели до школы. Ведь для ребенка это фактически совсем новый, неизвестный математический язык. Ему, собственно, так и следует говорить об этом, объясняя смысл каждого нового значка и соотнося его с реальными ситуациями.