86087 (612637), страница 2

Файл №612637 86087 (Фактор-группы. Cмежные классы) 2 страница86087 (612637) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

называется двойным смежным классом группы G по подгруппам H и K

ЛЕММА 2.3.1. Пусть H и K –подгруппы группы G. Тогда справедливы следующие утверждения:

1) Каждый элемент g G содержится в единственном двойном смежном классе HgK;

2) Два двойных смежных класса по H и K либо совпадают, либо их пересечение пусто;

3) Группа G есть объединение непересекающихся двойных смежных классов по подгруппам H и K;

4) Каждый двойной смежный класс по H и K есть объединение правых смежных классов по H и левых смежных классов по K;

5) Если группа G конечна, то двойной смежный класс HgK содержит

| K: H K | правых смежных классов по H и | H : H K | левых смежных классов по К.

Доказательство.

(1)Так как каждая подгруппа содержит единичный элемент, то

g=ege HgK

Допустим, что gHxK. Тогда g=hxk для некоторых hH, kK и

HgK=H(hxk)K=HxK.

(2) и (3) следуют из (1)

(4)Так как

HgK= = ,

то утверждение (4) доказано.

Подсчитаем число правых смежных классов в разложении HgK= по подгруппе H. Допустим, что Hgk =Hgk . Тогда

Hg k k = Hg и k k g Hg K=H K

Справедливо и обратное, т.е. если k k H K, то

k k g Hg, g k k Hg, g k Hgk

и Hg k = Hgk . Поэтому, в двойном смежном классе HgK правых смежных классов по H столько, сколько их в группе K по подгруппе H K.

Аналогично,

Hgk= и h gK=h gK

тогда и только тогда, когда h h H K . Поэтому, в произведении HgK левых смежных классов по K будет точно столько, каков индекс

|H : H K |

Произведение подгрупп. При g = e двойной смежный класс HgK=HK={hk | hH , kK} превращается в произведение подгрупп H и K . В общем случае HK не является подгруппой.

Пример:

Найдем разложение симметрической группы S в левые смежные классы по подгруппе .

Для этого найдем все левые смежные классы группы

S ={,(12),(13),(23),(123),(132)} по подгруппе H= ={,(12)}

H = {, (12)} = {, (12)} = H,

(12)H = (12) {, (12)} = {(12), } = H,

(13)H = (13) {, (12)} = {(13), (123)},

(23)H = (23) {, (12)} = {(23), (132)},

(123)H = (123){,(12)} = {(123),(13)} = (13)H,

(132)H = (132){,(12)} = {(132),(23)} = (23)

Искомое разложение принимает вид

S =H (13) H (23) H.

3. НОРМАЛЬНЫЕ ПОДГРУППЫ И ФАКТОР-ГРУППЫ

3.1 Нормальные подгруппы

Подгруппа H называется нормальной подгруппой группы G, если xH=Hx для всех xG. Запись H G читается так: “H – нормальная подгруппа группы G”. Равенство xH=Hx означает, что для любого элемента h H существует элемент h H такой, что xh = h x.

ТЕОРЕМА 3.1.1.(Критерий нормальной подгруппы) Для подгруппы H группы G следующие утверждения эквивалентны:

1) H – нормальная подгруппа группы G;

2) Подгруппа H вместе с каждым своим элементом содержит все ему сопряженные элементы, т.е. h H для всех hH и всех xG;

3) Подгруппа H совпадает с каждой своей сопряженной подгруппой, т.е. H=H для всех xG.

Доказательство.

Доказательство проведем по схеме (1) (2) (3) (4)

(1) (2). Пусть H G, т.е. xH=Hx для всех xG. Если h — произвольный элемент из H, то hx Hx = xH. Поэтому существует элемент h H такой, что hx = x h .Теперь x hx = h H.

(2) (3). Пусть выполняются требование 2). Тогда H = {h | h H} H для всех x G. В частности, Hx H, т.е. xHx H. Теперь

H x Hx =H и H = H для всех x G.

(3) (1). Если H = H для всех x G, то x Hx = H и Hx = xH для всех x G, т.е. H – нормальная подгруппа группы G.

Ч.т.д.

СЛЕДСТВИЕ 3.1.1.

Если H G и h H, то h H. Обратно, если h H для всех h H, то H G.

Понятие "нормальная подгруппа" можно рассматривать не только по отношению ко всей группе, но и относительно подгрупп. Если H K G, то подгруппа H будет нормальной в K, если xH = Hx для всех x K.

Простая группа. В каждой группе G тривиальные подгруппы (единичная подгруппа E и сама группа G) являются нормальными подгруппами. Если в неединичной группе G нет других нормальных подгрупп, то группа G называется простой. Единичную группу E считают непростой группой.

ТЕОРЕМА 3.1.2. Абелева простая группа является циклической группой простого порядка. Обратно, каждая группа простого порядка будет простой абелевой группой.

3.2 Фактор-группы

Пусть H — нормальная подгруппа группы G. Обозначим через совокупность всех левых смежных классов группы G по подгруппе H, т.е. = ={xH | x G}. Положим

(xH)(yH) = xyH. (3.2.1)

Проверим, что это равенство задает алгебраическую операцию на множестве . Если xH = x H, yH = y H для некоторых x , y G, то x = xh, y = =yg, h и g H. Поэтому

(x H)(y H) = x y H = (xh)(yg)H = xy(y hy)gH = xyH,

т.к. y hy H по теореме 3.1.1. Таким образом, равенство (3.2.1) не зависит от выбора представителей смежных классов и каждой паре xH, yH ставится в соответствие единственный элемент xyH.

Ясно, что предложенная операция (3.2.1) определена на и ассоциативна. Элемент eH = H будет единичным, а элемент a H — обратным к элементу aH. Таким образом, доказана следующая.

ТЕОРЕМА 3.2.1. Совокупность = {xH | x G} всех левых смежных классов группы G по нормальной подгруппе H с операцией

(xH)(yH) = xyH

образует группу с единичным элементом eH = H и обратным элементом (aH) = a H.

Группа называется фактор-группой группы G по подгруппе H и обозначается через G/H.

Если H не будет нормальной подгруппой, то равенство (3.2.1.) не будет задавать алгебраическую операцию, и совокупность левых смежных классов не будет группой.

Очевидно, что если группа G конечна, то фактор-группа группы G по любой нормальной подгруппе H также будет конечной группой порядка, равного индексу подгруппы H в группе G, т.е.

|G/H |=| G : H |=| G | / | H |

ЛЕММА 3.2.1. Если фактор-группа G/Z(G) циклическая, то группа G абелева.

Доказательство.

Пусть G/Z(G) = gZ(G) циклическая группа и a, b — произвольные элементы группы G. Тогдаa = g z , b = g z , z , z Z(G), k, l Z

и

ab = g z g z = g g z z = g g z z = g z g z = ba

ТЕОРЕМА 3.2.2. Все фактор-группы бесконечной циклической группы а исчерпываются бесконечной циклической группой а / E а и конечными циклическими группами aа порядка m для каждого натурального числа m.

Доказательство.

По теореме 1.2 все подгруппы бесконечной циклической группы A = а исчерпываются единичной подгруппой E и бесконечными циклическими подгруппами M = а , m N. Так как каждая циклическая группа абелева, то в ней любая подгруппа нормальна.

Фактор-группа A/E очевидно будет бесконечной циклической группой, изоморфной A. Так как A = {a | k Z}, то фактор-группа A/M состоит из смежных классов a M, k Z. Если два смежных класса совпадут a M = a M, то a

M и s - t кратно m. Отсюда следует, что смежные классы M, aM, a M, . , a M попарно различны. Кроме того, для любого a M A/M имеем:

t = mq + r, 0 ≤ r < m и a M = a

a M = a M.

Таким образом,

A/M = {M, aM, a M, . . . , a M} = aM,

т.е. фактор-группа A/M будет конечной циклической группой порядка m.

ТЕОРЕМА 3.2.3. Все фактор-группы конечной циклической группы a порядка n исчерпываются конечными циклическими группами aа порядка m для каждого натурального m, делящего n.

Доказательство.

По теореме 1.3, все подгруппы конечной циклической группы A = a порядка n исчерпываются циклическими подгруппами M = а порядка n/m для каждого натурального m, делящего n. Легко проверить, что

A/M = aM = {aM, a M, . . . , a M,M},

т.е. A/M=aа будет циклической группой порядка m.

Условимся через S(G,H) обозначать совокупность всех подгрупп группы G, содержащих подгруппу H. В частности, S(G,E)=S(G) — совокупность всех подгрупп группы G, а S(G,G) = {G}.

ТЕОРЕМА 3.2.4.(Теорема о соответствии)

Пусть H — нормальная подгруппа группы G. Тогда:

1) если U — подгруппа группы G и H ≤ U, то = U/H — подгруппа фактор-группы = G/H;

2) каждая подгруппа фактор-группы = G/H имеет вид = V/H, где V— подгруппа группы G и H V ;

3) отображение : U → является биекцией множества S(G,H) на множество S( );

4) если N S(G,H), то N — нормальная подгруппа группы G тогда и только тогда, когда N/H – нормальная подгруппа фактор-группы G/H.

Доказательство.

(1) Пусть U S(G,H) и пусть ={uH | u U} — совокупность смежных классов группы U по своей нормальной подгруппе H. Если u H, u H , то u , u U, а так как U — подгруппа, то u u U и u U. Поэтому,

(u H)(u H) = u u H , (u H) = u H

и по критерию подгруппы (теорема 1.4) совокупность – подгруппа группы .

(2) Пусть — произвольная подгруппа из . Тогда состоит из некоторых смежных классов группы G по подгруппе H. Обозначим через V множество всех тех элементов группы G, из которых состоят смежные классы, принадлежащие , т.е. V = {x G | xH }. Если v , v V, то v H, v H , а так как — подгруппа, то

Характеристики

Тип файла
Документ
Размер
3,64 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее