86082 (612635), страница 2

Файл №612635 86082 (Уравнение и функция Бесселя) 2 страница86082 (612635) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(18``)

Заменяя в (18`) и (18``) на , найдем:

, (18```)

. (18````)

Интегральное представление Jn(x)

Так как, по доказанному, при имеем , то по формуле (17) получаем (используя в преобразованиях формулы Эйлера):

где принято во внимание, что есть четная функция от есть нечетная функция от . Итак, доказано, что для любого целого числа

. (19)

Формула (19) дает представление бесселевых функций с целым индексом в виде определенного интеграла, зависящего от параметра . Эта формула называется интегральным представлением Бесселя для , правая часть формулы называется интегралом Бесселя. В частности, при найдем:

. (19`)

5. Ряды Фурье-Бесселя

Рассмотрим на каком-либо интервале (конечном или бесконечном) два дифференциальных уравнения

, , (20)

где и – непрерывные функции на . Пусть и – ненулевые решения этих уравнений. Умножение на и на и последующее вычитание дают

.

Пусть и принадлежат и , тогда после интегрирования в пределах от до получим

. (21)

Если и – соседние нули решения , то между и сохраняет постоянный знак, пусть, например, на ( , ) (в противном случае следует заменить на ), тогда , (равенство нулю исключено, так как – ненулевое решение дифференциального уравнения второго порядка). Если на , то должна, по крайней мере, раз обращаться в нуль между и , так как иначе сохранит постоянный знак на ( , ). Пусть, например, на ( , ) (в противном случае заменяем на ), и тогда из (21) получим противоречие, ибо левая часть ≤0, а правая >0. Таким образом доказана теорема сравнения Штурма: если P(x)

Из теоремы сравнения Штурма вытекают нижеследующие следствия. Если на , то каждое ненулевое решение уравнения может иметь на не более одного нуля (это легко видеть, если положить и взять ). Если на (где ), то для всяких двух соседних нулей и ( ) каждого ненулевого решения уравнения имеем (это легко видеть, если положить , взять и заметить, что нулями будут только числа вида , целое). Если на (где ), то для всяких двух соседних нулей каждого ненулевого решения уравнения имеем (это легко видеть, если положить и взять ). Из сказанного следует, что если на , то для всяких двух соседних нулей и ( ) каждого ненулевого решения уравнения имеем .

Изложенное показывает, что если непрерывна на и превышает некоторое положительное число вблизи +∞, то каждое ненулевое решение уравнения имеет на бесконечно много нулей. Если еще вблизи не обращается в нуль, то эти нули образуют бесконечную возрастающую последовательность , имеющую пределом +∞, а если, кроме того, , где , то .

Рассмотрим уравнение Бесселя

на интервале . Подстановка приводит к уравнению

.

Очевидно, и имеют одни и те же нули. Так как , где – целая функция, то не имеет нулей на при достаточно малом , и так как при , то при каждом нули на образуют бесконечную возрастающую последовательность

причем .

Если , то удовлетворит уравнению

на интервале (0, +∞). Подстановка приводит к уравнению

и, следовательно, удовлетворяет этому уравнению. Таким образом, при любых положительных и имеем

, где ,

, где ,

откуда

,

следовательно,

, где . (22)

Пусть теперь . Разложение по степеням начинается с члена, содержащего , разложение по степеням начинается с члена, содержащего , так как коэффициент при равен нулю, что легко видеть, исходя из формулы (5). Следовательно, из (22) при получим

,

то есть

, (23)

откуда видно, что если и являются разными нулями функции , то

. (23`)

Этим доказано, что при система функций

на интервале является ортогональной относительно веса .

Переходя к пределу при в соотношении

и используя правило Лопиталя, получим при всяком

, (24)

следовательно, если является нулем функции , то

. (24`)

Таким образом, при каждом всякой непрерывной функции на , удовлетворяющей требованию

,

поставлен в соответствие ряд Фурье-Бесселя

, (25)

коэффициенты которого определяются формулами

. (25`)

Можно доказать, что система функций на , ортогональная относительно веса , замкнутая. В частности, если ряд Фурье-Бесселя (25) равномерно сходится к порождающей его непрерывной функции .

Можно показать, что если и непрерывная на и кусочно-гладкая на функция, то ряд Фурье-Бесселя этой функции сходится к ней при .

6. Асимптотическое представление бесселевых функций с целым индексом для больших значений аргумента

Пусть - положительная функция и - какая-нибудь (вообще комплекснозначная) функция, определенные для достаточно больших значений . Запись

при

означает, что найдутся такие числа и M, что при имеем .

Подобная запись употребляется и в других аналогичных случаях. Например, если - положительная функция и - какая-нибудь функция, определенные для достаточно малых положительных значений , то запись

при

означает, что найдутся такие числа и , что на .

Вспомогательная лемма

Если дважды непрерывно дифференцируема на , то для функции

имеет место асимптотическое представление

при .

Докажем эту лемму. Заменяя на , получим:

. (26)

Рассмотрим интеграл, фигурирующий в первом слагаемом правой части формулы (20). Заменяя на , найдем:

,

но, заменив на , получим:

.

Если положительна, убывает и стремиться к нулю при , то и , а следовательно, и есть при , поэтому

при ,

откуда

при .

Итак, получаем асимптотическое представление:

при . (27)

Рассмотрим теперь интеграл, фигурирующий во втором слагаемом правой части формулы (20). Имеем:

,

.

Очевидно, дважды непрерывно дифференцируема на , но существуют и , поэтому становится непрерывно дифференцируема на . Интегрирование по частям дает:

,

где первое слагаемое правой части есть при , а интеграл во втором слагаемом несобственный при нижнем пределе мажорируется интегралом

,

который сходится, так как

при ;

следовательно, второе слагаемое есть тоже при .

Итак, имеем:

при . (28)

Из (26), (27), (28) получаем искомое асимптотическое представление:

при . (29)

Из этой формулы, переходя к сопряженным величинам, найдем еще:

при . (29`)

Формулы (29) и (29`) верны и для комплекснозначных функций .

Вывод асимптотической формулы для Jn(x)

Заменяя на , получим:

(учитывая, что есть четная функция от , а есть нечетная функция от ). Подстановка дает:

,

где есть, очевидно, полином n-й степени (полином Чебышева), так как из формулы Муавра видно, что есть полином n-й степени относительно . Но

и, заменяя в первом из этих интегралов на , получим:

Так как и на имеют производные всех порядков, то к двум последним интегралам применимы формулы (29) и (29`), и мы получаем:

;

но ; , следовательно,

.

Итак, имеем искомое асимптотическое представление бесселевой функции первого рода с целым индексом для больших значений аргумента:

при . (30)

Эта формула показывает, что с точностью до слагаемого порядка является затухающей гармоникой с волной постоянной длины и амплитудой, убывающей обратно пропорционально квадратному корню из абсциссы.

В частности,

при ; (30`)

при . (30``)

Графики этих функций изображены ни рисунках 1 и 2.

Рассмотрим несколько примеров решения уравнения Бесселя.

1. Найти решение уравнения Бесселя при

,

удовлетворяющее начальным условиям при , и .

Решение.

На основании формулы (5`) находим одно частное решение:

.

2. Найти одно из решений уравнения:

, .

Решение.

Сделаем замену

.

При получим:

.

При будем искать решение в виде обобщенного степенного ряда:

.

Уравнение на имеет вид ;

, , , , поэтому

,

, .

Рисунок 1 – График функции y=J0(x)

Рисунок 2 – График функции y=J1(x)

Список литературы

1. Пискунов Н. С. «Дифференциальное и интегральное исчисления», учебное пособие для втузов, М: Наука, 1985г., 560 стр.

2. Романовский П. И. «Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа», учебное пособие для втузов, М: Наука, 1983г., 336 стр.

Характеристики

Тип файла
Документ
Размер
9,69 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее