86041 (612626), страница 2

Файл №612626 86041 (Методология изучения темы "Признаки равенства треугольников") 2 страница86041 (612626) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

I. Организационный момент

Проверка готовности к уроку (наличие чертежных инструментов, нелинованной бумаги).

II. Два ученика получают задания и выполняют их на доске.

1. Начертите прямоугольный треугольник так, чтобы стороны, образующие прямой угол, были равны 3 дм и 5 дм.

2. В треугольнике ABC градусная мера угла A равна 58°, а угла B равна 49°. Вычислите градусную меру угла C.

Четыре ученика получают карточки с заданием и выполняют работу на нелинованной бумаге.

1) Начертите прямоугольный треугольник так, чтобы стороны, образующие прямой угол, были равны 3 см и 5 см.

2) Взяли проволоку длиной 17 см и из нее сделали треугольник, две стороны которого равны 5 см и 6 см. Каков вид этого треугольника?

С остальными учениками проводится фронтальный опрос.

1. Назовите треугольники, изображенные на доске (рис. 5).

2. Назовите вершины MKN.

3. Назовите стороны PST.

4. Назовите углы ABC.

[ ABC, BCA, BAC.]

5. Может ли быть треугольник с двумя прямыми углами? С двумя тупыми углами? Ответ обоснуйте.

6. Существует ли треугольник, все углы которого больше 70°? Меньше 50°?


Рис. 5

7. По схеме (рис. 6) повторяются виды треугольников.

Вид треугольника

Равнобедренный

Равносторонний

Разносторонний

Прямоугольный

Тупоугольный

Остроугольный

Рис. 6

8. Определите «на глаз» вид каждого из треугольников, изображенных на слайдах (рис. 7).


Рис. 7

III. Ученики, работающие по карточкам, сдают выполненное задание. Те, кто работал у доски, рассказывают, как выполняли задание. Дополнительные вопросы им задают ученики.

IV. Итак, на предыдущем уроке мы познакомились с треугольником и изучили их виды.

  • Как же построить равнобедренный треугольник с помощью циркуля и линейки?

  • Ученики предлагают провести произвольный отрезок, затем из концов отрезка как из центров, не меняя раствора циркуля, провести дуги до пересечения. Точку пересечения соединить с концами отрезка.

  • Почему вы уверены, что получился равнобедренный треугольник?

(Взяли раствор циркуля, не равный построенному отрезку и провели дуги равных окружностей. Точка их пересечения находится на равном расстоянии от концов отрезка.)

  • Вводится название сторон: основание, боковые стороны (рис. 8).

ABC: AB = BC, A = C.


Рис. 8

  • Измерьте углы при вершинах A и C.

Большинство учеников получают равные градусные меры, и учитель сообщает, что именно таким образом в Древней Греции практическим путем установили, что «углы при основании» равны. И лишь много лет спустя это было доказано.

V. Физкультурная пауза

(Ученики повторяют за учителем все движения.)

VI. Продолжаем работу.

  • Соедините вершину B с серединой противоположной стороны. Измерьте углы BMC и BMA. Что вы получили?

Ученики делают вывод: BMC = BMA = 90° и дополняют рисунок. Используя модель равнобедренного треугольника, учитель перегибает модель по отрезку BM. Ученики замечают, что треугольники ABM и BMC при наложении совпали, и делают вывод: ABM = BMC.

VII. Задание на дом

1. Постройте равнобедренный треугольник.
2. Измерьте все его углы. Сделайте вывод.
3. Проведите отрезки, соединяющие вершины с серединами противоположных сторон. Что вы заметили?



УРОК 3

Тема урока: «Построение треугольников. Равенство треугольников»

Цели урока:

  • научить учеников строить треугольник, равный данному, используя циркуль и линейку;

  • из опыта практической деятельности учащиеся должны понять, что треугольники равны по трем элементам; каждая сторона треугольника меньше суммы двух других.

Оборудование: у каждого ученика набор чертежных инструментов, цветная бумага, ножницы.

Ход урока

I. Работа с классом

На доске изображены фигуры.

Задания

1. На рисунке 9 проведите прямую так, чтобы она разбила четырехугольник на два треугольника. Определите «на глаз» вид получившихся треугольников.


Рис. 9

2. Проведите прямую так, чтобы она разбила четырехугольник (рис. 10) на треугольник и четырехугольник, а на рисунке 11 – на треугольник и пятиугольник.


Рис. 10


Рис. 11

3. Проволоку длиной 15 см согнули так, что получился разносторонний треугольник. Чему равен периметр этого треугольника?

4. Основание равнобедренного треугольника равно 4 см, а боковые стороны вдвое больше основания. Найдите периметр треугольника.

5. В равнобедренном треугольнике один из углов равен 64°. Найдите два других угла этого треугольника.

II. Работа в группах из четырех человек

(Задание для каждой группы с разными данными.)

  • Постройте треугольник ABC, если:

1) AB = 5 см, AC = 8 см, Р BAC = 50°;
2) CA = 4 см, CB = 6 см, Р ABC = 120°;
3) AB = 7 см, Р CAB = 60°, Р CBA = 30°;
4) OP = 4 см, Р KOP = 20°, Р OPK = 70°;
5) KL = 4 см, LM = 3 см, MK = 2,5 см;
6) AB = 3 см, BC = 4 см, AC = 5 см.

Три группы из шести групп рассказывают, как проводили построение.

  • Вырежьте получившийся треугольник. Сравните его с треугольниками, построенными учениками из своей группы.

В каждой группе получили равные треугольники. Казалось бы, ничего удивительного нет, данные были одинаковы, но ...

III. Общее задание

  • Постройте треугольник, в котором A = 30°, B = 60°, C = 90°.

  • Что вы замечаете? Какой вывод можно сделать? (У всех разные треугольники.)

IV. Работа в группах

(Задание одинаково для пар групп.)

  • Постройте треугольники, у которых стороны равны:

1) 6 см, 2 см, 3 см;
2) 6 см, 2 см, 4 см;
3) 6 см, 2 см, 7 см.

В ходе построений и рассуждений ученики приходят к выводу, что у треугольника каждая сторона меньше суммы двух других сторон, в противном случае треугольник построить невозможно.

V. Минутка отдыха

  • Передайте свое настроение с помощью изображения треугольника.

Кто-то раскрашивает треугольник в разные цвета, кто-то составляет фигурки из треугольников, кто-то изображает рожицы, проявляя выдумку и фантазию (рис. 12, 13).


Рис. 12


Рис. 13

VI. Проверочная работа

Вариант 1

1. Постройте равнобедренный тупоугольный треугольник.
2. В треугольнике DCE D = 24°, C = 58°. Найдите E.
3. Основание равнобедренного треугольника равно 6 см, а боковые стороны в три раза больше. Найдите периметр треугольника.
4. Постройте треугольник, в котором AB = 4 см, BAC = 35°, CBA = 80°.

Вариант 2

1. Постройте равнобедренный остроугольный треугольник.
2. В треугольнике MNL M = 64°, N = 57°. Найдите L.
3. Основание равнобедренного треугольника равно 8 см, а боковые стороны в три раза больше. Найдите периметр треугольника.
4. Постройте треугольник, в котором AB = 4 см, AC = 3 см, BAC = 60°.

VII. Задание на дом .



УРОК 4

Тема урока: «Признаки равенства треугольников»

Цели урока:

  • систематизировать теоретические знания по теме, закрепить умения и навыки использования теоретических знаний к решению задач;

  • развить творческий подход и интерес к обучению.



Ход урока



I. Проверка домашнего задания.

Три ученика около доски записывают опорный конспект:

1) три признака равенства треугольников; 2) равнобедренный треугольник и его свойства; 3) признаки равенства прямоугольных треугольников.

В это время учитель проводит фронтальный опрос класса.

1. Сформулируйте 1 признак равенства треугольников.

2. Сформулируйте 2 признак равенства треугольников.

3. Какой треугольник называется равнобедренным?

4. Сформулируйте признак равнобедренного треугольника.

5. Сформулируйте свойства равнобедренного треугольника.

6. Чем отличается признак геометрической фигуры от ее свойства?

7. Сформулируйте 3 признак равенства треугольников.

8. Какой треугольник называется равносторонним?

9. Что считается признаком, что – свойством равностороннего -ка?

10. К каждой ли теореме существует обратная?

11. Приведите пример теоремы, к которой не существует обратной.

12. Приведите пример теоремы, к которой существует обратная.

13. Как строится обратная теорема?

14. Сформулируйте признаки равенства прямоугольных треугольников.

После фронтального опроса учитель проводит беседу по опорным конспектам на доске. Если необходимо, то ученики класса дополняют и исправляют записи на доске.

ІІ. Решение задач.

Два ученика около доски решают задачи по готовым рисункам, которые выполнены учителем до урока. Если необходимо, то ученики класса дополняют и исправляют записи на доске.

Задачи по готовым рисункам

1

. Дано: АВС, BD=CD, BM=CM, DBM=400,ADB=800. Найти: BDM, MDC, DMC, MCD.

Ответ: BDM=MDC=500, DMC=900, MCD=400.

2

. AOM=FOE, периметр OEF=40 см , AF=20 см. Найти: периметр AEF.

Ответ: 60 см.

III. Физкультурная пауза

(Ученики повторяют за учителем все движения.)

IV. Устная работа.

Учитель с учениками устно решает задачи по готовым рисункам, изображенным на плакатах. Ученики должны найти на рисунках равные треугольники и объяснить равенство, назвав соответственный признак равенства треугольников.

Задачи для устного решения.



ІV. Домашнее задание.



УРОК 5
Тема урока: “Решение прикладных задач»

Цель урока:

  • рассмотреть жизненные и прикладные задачи, на которых можно продемонстрировать важную роль признаков равенства треугольников в жизни, научить учеников творчески применять признаки равенства треугольников во время решения задач.



Ход урока



І. Гимнастика ума.

При написании математического диктанта повторяются три признака равенства треугольников, понятие равнобедренного треугольника, его свойства и признаки. Цель диктанта – систематизировать и повторить важные факты данной темы, способствовать развитию внимания, логического мышления и математического зрения учеников, сформировать навыки умственной деятельности. Учитель зачитывает задания, а ученики записывают ответы к ним или ставят знак «+», если учитель называет правильный ответ.

После выполнения задания ученики обмениваются тетрадями для перекрес-тной проверки. Такая система контроля развивает у учеников честность и объективность в оценивании результатов своей деятельности и деятельности одноклассников. Задание диктанта предлагается по вариантам.

Математический диктант.

Вариант І.

1. В KNO и PQT равные стороны KN и PQ и углы K и P. Какое еще равенство должно выполняться, чтобы треугольники были равны по 1 признаку равенства треугольников?

2. У равных BCD и MPQ углы B и D равны соответственно углам M и Q. Что следует из условия по 2-му признаку равенства треугольников?

3. В АВС проведены медианы AD, BE, CF. Длины отрезков AF, AE, BD соответственно равны 3 см, 5 см, 6 см. Найти периметр АВС.

4. В АВС и POT стороны AB=PO, BC=OT. Какое еще условие должно выполняться, чтобы треугольники были равны по 3 признаку равенства треугольников?

5. Продолжить предложение: “В равнобедренном треугольнике медиана является ...”

Вариант ІІ.

1. В ABC и DEF равные стороны AB и DE и углы A и D. Какое еще равенство должно выполняться, чтобы треугольники были равными по 1 признаку равенства треугольников?

2. У равных MRQ и KLT углы M и Q равны соответственно углам K и T. Что следует из условия согласно 2 признаку равенства треугольников?

3. В АВС проведены биссектрисы AD, BE, CF. Градусные меры углов соответственно равны BAD=30, CBE=40, ACE=20. найдите сумму углов АВС.

4. В MNQ и RST стороны MN=RT, NQ=NS. Какое еще условие должно выполняться, чтобы треугольники были равны по 3 признаку равенства треугольников?

5. Продолжить предложение: “Если в треугольнике все углы равны, то он ...”



Ответы учителя.

І вариант. 1. KO=PT. 2. BDMQ. 3. 28 см. 4. AC=PT. 5. биссектрисой и высотой

IІ вариант. 1. AC=DF. 2. MQKT. 3. 1800. 4. MQ=RS. 5. равносторонний



ІІ. Решение прикладных задач.

Задача 1. Чтобы измерить на местности расстояние между двумя точками А и В, между которыми нельзя пройти с мерной цепью , выбирают такую точку С, из которой были бы видны как точка А, так и В и из которой можно было бы к ним пройти. Провешивают*) АС и ВС, продолжают их за точку С и отмеряют CD = AC и EC = CB. Тогда отрезок ED равен искомому расстоянию АВ. Почему?

*) То есть отмечают направление шестами - вехами.

Задача 2. Чтобы измерить на местности расстояние между двумя точками А и В, из которых одна (точка А) недоступна, провешивают направление отрезка АВ и на его продолжении отмеряют произвольный отрезок BE. Выбирают на местности точку D, из которой можно было бы видеть точку А и пройти к точкам В и E. Провешивают прямые BDG и EDF и отмеряют FD = DE и DG = BD. Затем идут по прямой FG, смотря на точку А, пока не найдут такую точку Н, которая лежит на прямой AD. Тогда НG равно искомому расстоянию. Доказать.

Характеристики

Тип файла
Документ
Размер
303,04 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7030
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее