85998 (612620), страница 2

Файл №612620 85998 (Мономиальные динамические системы) 2 страница85998 (612620) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Пример 1.2.2.

Для мономиальной системы в примере 1.2.1, определим , где

.

Рассчитаем переходы в фазовом пространстве .

000 - ,

001 - ,

010 - ,

011 - ,

100 - ,

101 - ,

110 - ,

111 - .

Фазовое пространство изображено на рисунке 1.2.3.

Рис. 1.2.3. Фазовое пространство .

Теорема 1.2.1.

Пусть – мономиальная динамическая система. Тогда – система конечных элементов тогда, и только тогда, когда и – системы конечных элементов.

Доказательство.

Из следствий 1.2.1 и 1.2.3, если – система конечных элементов, то и тоже системы конечных элементов. Для доказательства от противного, предположим что и – системы конечных элементов, а – нет. Для каждого конечного цикла , любой из двух связанных наборов имеет все координаты ненулевые, или все наборы имеют минимум одну нулевую координату. В первом случае из этого следует, что имеет конечный цикл, той же длины. Следовательно, если имеет конечный цикл длины большей чем , тогда включаются только наборы имеющие минимум одну нулевую координату.

Пусть – наборы в конечном цикле. Так как этот конечный цикл должен отображать конечный элемент для из этого следует, что имеет тот же самый базисный вектор, то есть, тот же самый образец нулевых вхождений, и отличается только в ненулевых координатах. Кроме того, мономы в ненулевых координатах не включают никакие переменные, соответствующие нулевым координатам. Таким образом, если построить новый набор , заменяя каждый в , на , – будет частью конечного цикла длины, по крайней мере , что является противоречием. Это доказывает теорему.

1.3 Линейные системы над конечными коммутативными кольцами

Теорема в предыдущей части показывает что для того чтобы решить, будет ли данная мономиальная система , над конечной областью , системой с конечными элементами, достаточно решить этот вопрос для связанных булевых систем, для которых определена линейная система над конечным кольцом . Поэтому остаётся развить критерий для линейных систем над конечными коммутативными кольцами, для того чтобы решить будет ли система – системой конечных элементов. Здесь мы сведем общий случай к имеющему первичную мощность.

Путь для взаимно простых целых чисел и , и пусть –линейная система для размерности . Выбрав изоморфизм получим, что – изоморфно к произведению , где и – линейные системы над и , соответственно. Используя факт того, что фазовое пространство является прямым произведением тогда, когда ориентированы графы фазовых пространств для и , мы получаем следующий результат.

Предположение 1.3.1.

Пусть для взаимно простых целых чисел и , и пусть – линейная система над размерности . Пусть и – линейные преобразования над и , соответственно. Тогда – система конечных элементов тогда, и только тогда, когда и – системы конечных элементов.

Имея цель развить критерий для изучения систем конечных элементов, достаточно изучить линейные системы над кольцами вида для простых чисел . Следующая теорема обеспечивает критерий для дальнейшего решения проблемы с линейной системой над областью простых чисел .

Теорема 1.3.1.

Пусть – линейное отображение, и пусть – проекционное отображение на . Тогда , где . Тогда фазовое пространство – изоморфно подграфу фазового пространства .

Доказательство.

Пусть определяется . Тогда легко проверить что , так как – линейные отображения для всех . Поэтому, прямо проверяется что тогда, и только тогда, когда , и, следовательно, фазовое пространство изоморфно подграфу фазового пространства .

Следствие 1.3.1.

Пусть – линейное отображение, и пусть – проекционное отображение на . Если не является системой конечных элементов, тогда – не является системой конечных элементов.

Пример 1.3.1.

Пусть определяется . Тогда .

- состоит из всех возможных наборов длины 2 из четырёх элементов: 0, 1, 2,3.

Это наборы:

Используя функцию , определим переходы в фазовом пространстве .

00 - ,

01 - ,

02 - ,

03 - ,

10 - ,

11 - ,

12 - ,

13 - ,

20 - ,

21 - ,

22 - ,

23 - ,

30 - ,

31 - ,

32 - ,

33 - .

Так как , переходы в фазовом пространстве определены следующим образом.

00 - ,

01 - ,

10 - ,

11 - .

Фазовые пространства и изображены на рисунках 1.3.1 и 1.3.2, соответственно.

Рис. 1.3.1. Фазовое пространство .

Рис. 1.3.2. Фазовое пространство .

ЗАКЛЮЧЕНИЕ

Результат позволяет изучить динамику линейных систем над конечными кольцами, в частности для нахождения критерия для линейной системы быть системой конечных элементов. Также обеспечивается алгоритм решения того, чтобы мономиальная система над произвольной конечной областью была системой конечных элементов. Однако, пока, трудно изучается даже динамика линейных систем над кольцам вида , из-за недостатка уникальной факторизации в полиномиальном кольце .

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Colon-Reyes O., Jarrah A., Laubenbacher R., Sturmfels B. Monomial dynamical systems over finite fields// Complex Systems. 2006. Том 16, стр. 333-342.

Характеристики

Тип файла
Документ
Размер
6,26 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее