85879 (612598)

Файл №612598 85879 (Теория вероятности и математическая статистика)85879 (612598)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Московский авиационный институт

/государственный университет/

Филиал «Взлет»



Курсовая работа

Теория вероятности и математическая статистика

Содержание

Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Задание №3: Проверка критерием Х2: имеет ли данный массив соответствующий закон распределения

Список используемой литературы

Задание №1: Проверка теоремы Бернулли на примере моделирования электросхемы

Теорема Я. Бернулли: при увеличении количества опытов, частота появлений событий сходится по вероятности к вероятности этого события.

План проверки: Составить электросхему из последовательно и параллельно соединенных 7 элементов, рассчитать надежность схемы, если надежность каждого элемента: 0.6 < pi < 0.9. Расчет надежности схемы провести двумя способами. Составить программу в Turbo Pascal, при помощи которой мы будем проводить опыты, учитывая, что надежность каждого из элементов в пределах от 0.6 до 0.9. Высчитывать частоту безотказной работы схемы. Для этого мы вводим надежность каждого из элементов. Программа будет увеличивать число опытов от 1000 до 20000 через 1000 проверяя сколько из этих опытов окажутся успешными, т.е. схема работает, для этого проверяется условие когда x[i]

Схема:

Электрическая цепь, используемая для проверки теоремы Бернулли

Расчет:

Чтобы доказать выполнимость теоремы Бернулли, необходимо чтобы значение частоты появления события в серии опытов в математическом моделировании равнялось значению вероятности работы цепи при теоретическом расчёте этой вероятности.

Математическое моделирование с помощью Turbo Pascal.

Program TVMS_kursov_1;

Uses CRT;

Var i,b,k,d,op,n:Integer;

ch:Real;

P,x:Array[1..10] of Real;

a:Array[1..30] of Integer;

Begin

ClrScr;

Randomize;

For i:=1 to 7 do

begin

Write(' Введите надёжности элементов P[',i,']=');

ReadLn(P[i]);

End;

WriteLn;

WriteLn('Число опытов ','Число благоприятных исходов ','Частота');

For op:=1 to 20 do

begin

n:=op*1000;

d:=0;

For k:=1 to n do

begin

For i:=1 to 7 do

begin

x[i]:=Random;

If x[i]

End;

b:=((a[3]+a[4]+a[5]*a[6]*a[7])*a[1]*a[2]);

if b>=1 then d:=d+1;

End;

ch:=d/n;

WriteLn;

Write(' ':3,n:5,' ':20,d:5,' ':15,ch:5:4);

End;

WriteLn;

ReadLn;

End.

Результат работы программы.

Введите надёжности элементов P[1]=0.7

Введите надёжности элементов P[2]=0.9

Введите надёжности элементов P[3]=0.8

Введите надёжности элементов P[4]=0.6

Введите надёжности элементов P[5]=0.9

Введите надёжности элементов P[6]=0.7

Введите надёжности элементов P[7]=0.8

Таблица

Числоопытов

Числоблагоприятныхисходов

Частота

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

618

1225

1808

2478

3022

3592

4182

4847

5432

6070

6643

7252

7876

8574

9030

9769

10281

11006

11520

11997

0.6180

0.6125

0.6027

0.6195

0.6044

0.5987

0.5974

0.6059

0.6036

0.6070

0.6039

0.6043

0.6058

0.6124

0.6020

0.6106

0.6048

0.6114

0.6063

0.5998

Теоретический расчёт вероятности работы цепи:

I способ:

II способ:

Из математического моделирования с помощью Turbo Pascal видно, что частота появления события в серии опытов сходится по вероятности к рассчитанной теоретически вероятности данного события .

Распределение модуля случайной величины, распределенной по нормальному закону

Пусть СВ Y подчиняется закону нормального распределения. Пусть по тем или иным причинам представляет интерес величина отклонения Y от нуля независимо от знака этого отклонения, т. е. СВ

X=|Y|

которая образует распределение модуля СВ, подчиненной нормальному закону.

Математическое выражение. Распределение модуля СВ определяется теми же двумя параметрами, которые характеризуют исходное нормальное распределение.

Плотность вероятности равна

где x0, σн — математическое ожидание и среднее квадратическое отклонение исходного нормального распределения;

φ(t) — функция, определяемая равенством (5.12).

Функция распределения равна

где Ф0(t) — функция, определяемая равенством (5.19).

График плотности вероятности приведен на рис. 5.2.

Математическое ожидание, дисперсия и среднее квадратическое отклонение СВ Х определяются равенствами:

Вид распределения модуля случайной величины, распределенной по нормальному закону, зависит от соотношения между x0 и σн (рис. 5.2).

Для определения медианы нужно решить уравнение

а для определения моды — уравнение

Второе уравнение при x0> σн, а первое при любых x0 и σн решаются численными или графическими методами. При x0н мода равна нулю.

Формулы (5.33) и (5.34) можно выразить через срединное отклонение Ен исходного нормального распределения, заменив в них σн на Ен, φ(t) на φ^(t), Ф0(t) на Ф^0(t). Функции φ^(t) и Ф^0(t) определяются равенствами (5.13) и (5.21).

Вычисление: Расчеты по формулам (5.33) — (5.37) производятся с помощью табл. II и III. Если расчетчик предпочитает выражение исходного нормального распределения через срединное отклонение, то используются табл. IV и V.

Задание №2: Смоделируем случайную величину, имеющую закон распределения модуля случайной величины, распределенной по нормальному закону

Программа в Turbo Pascal:

PROGRAM Kursov_2;

Uses Graph,Crt;

Var mi:array[1..100] of integer;

hi,pix,hn,hr,xi:array[1..200] of real;

m,i,l,j,n,a,b:integer;

mx,Dx,Gx,Sk,Ex,fx,xl,Dxs,Gxs,Sks,Exs:real;

xmin,xmax,pod,c,c1,c2,x,v:real;

st:string;

{---------------Генерирование числовых последовательностей-----------}

BEGIN

Randomize;

ClrScr;

Write(' Введите количество элементов последовательности: ' );

ReadLn(n);

a:=-3; b:=6;

WriteLn;

WriteLn(' Исходная последовательность с нормальным ');

WriteLn(' законом распределения на интервале [-3;6]:');

mx:=(a+b)/2;

Dx:=30/12;

for i:=1 to n do

begin

v:=0;

for j:=1 to 30 do

begin

x:=Random;

v:=v+x;

end;

v:=(v-15)/Sqrt(Dx)*1.5+mx;

hn[i]:=v;

Write(hn[i]:10:2);

end;

WriteLn;

ReadLn; ClrScr;

{-------------Минимальное и максимальное значения диапазона----------}

xmin:=hn[1]; xmax:=hn[1];

for i:=1 to n do

begin

if hn[i]>xmax then

xmax:=hn[i];

if hn[i]

xmin:=hn[i];

end;

WriteLn;

WriteLn(' Максимальное значение:',xmax:6:2);

WriteLn(' Минимальное значение: ',xmin:6:2);

ReadLn; ClrScr;

{--Генерирование модyля CB с нормальным законом распределения--}

a:=0; b:=6;

WriteLn(' последовательность модyля CB с нормальным ');

WriteLn(' законом распределения:');

WriteLn;

for i:=1 to n do

begin

hr[i]:=abs(hn[i]);

Write(hr[i]:10:2);

end;

WriteLn;

ReadLn; ClrScr;

{-------------Минимальное и максимальное значения диапазона----------}

xmin:=hr[1]; xmax:=hr[1];

for i:=1 to n do

begin

if hr[i]>xmax then

xmax:=hr[i];

if hr[i]

xmin:=hr[i];

end;

WriteLn;

WriteLn(' Максимальное значение:',xmax:6:2);

WriteLn(' Минимальное значение: ',xmin:6:2);

ReadLn; ClrScr;

{------------------------Разбивка на интервалы-----------------------}

m:=b-a;

c:=(xmax-xmin)/m;

c1:=xmin; c2:=c+xmin;

for i:=1 to m do

begin

xi[i]:=(c1+c2)/2;

mi[i]:=0; l:=1;

repeat

if (hn[l]=c1) then

mi[i]:=mi[i]+1;

l:=l+1;

until l=n+1;

c1:=c2;

c2:=c2+c;

end;

GotoXY(1,8);

WriteLn('Kоличество чисел Чacтoтa пoпaдaния Bыcoтa cтoлбикa гиcтoгpaммы');

WriteLn;

for i:=1 to m do

begin

pix[i]:=mi[i]/n;

hi[i]:=pix[i]/c;

WriteLn(i,': ',mi[i]:6,pix[i]:20:3,hi[i]:22:3);

end;

ReadLn; ClrScr;

{----------------------Числовые характеристики-----------------------}

xl:=0;

for i:=1 to m do

xl:=xl+xi[i]*pix[i];

Dxs:=0;

for i:=1 to m do

Dxs:=Dxs+sqr(xi[i]-xl)*pix[i];

Gxs:=sqrt(Dxs); Sks:=0; Exs:=0;

for i:=1 to m do

begin

pod:=xi[i]-xl;

Sks:=Sks+pod*pod*pod*pix[i]/(Gxs*Gxs*Gxs);

Exs:=Exs+pod*pod*pod*pod*pix[i]/(Gxs*Gxs*Gxs*Gxs);

end;

Exs:=Exs-3;

GotoXY(10,1);

WriteLn(' Числовые характеристики:');

GotoXY(10,5);

WriteLn('Среднестатистическое значение xl= ',xl:6:3);

GotoXY(10,8);

WriteLn('Статистическая дисперсия Dxs= ',Dxs:6:3);

GotoXY(10,11);

WriteLn('Среднестатистическое отклонение Gxs= ',Gxs:6:3);

GotoXY(10,14);

WriteLn('Скошенность Sks= ',Sks:6:3);

GotoXY(10,17);

WriteLn('Островершинность Exs= ',Exs:6:3);

ReadLn;

END.

Результат работы программы:

Введите количество элементов последовательности: 300

Исходная последовательность с нормальным

законом распределения на интервале [-3;6]:

2.79 1.48 -0.18 2.84 -0.51 1.90 0.83 0.84

-1.50 0.43 3.67 1.30 2.61 1.22 -1.24 -0.49

2.14 -0.16 -2.01 4.72 3.08 1.14 0.84 0.24

-0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

-1.14 0.77 1.68 -0.70 3.02 2.26 1.50 1.50

0.19 -0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 -0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 -0.56 1.77 0.77 1.21 2.08

-0.53 -0.03 0.78 -0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 -0.49 2.06 0.64 2.29

-0.02 3.78 3.66 1.13 1.46 4.10 2.95 1.94

0.31 2.14 1.84 -0.40 0.84 1.89 1.88 3.47

2.51 -0.50 1.05 2.15 2.54 1.27 1.61 0.32

2.33 4.57 2.84 4.60 1.74 0.81 -1.28 -0.98

-1.84 -0.64 2.18 2.20 1.01 2.29 0.35 1.35

3.48 3.82 -0.07 1.14 1.99 -0.52 4.42 -0.34

1.43 -0.90 1.96 -1.30 -0.26 1.04 3.47 3.58

-0.95 1.68 -0.60 4.30 -0.96 1.19 1.94 1.23

0.76 1.84 0.05 0.69 1.18 1.68 1.04 1.07

2.87 1.66 0.96 2.88 4.11 0.49 0.82 1.71

-0.67 0.06 -0.98 3.26 2.56 1.49 3.09 1.43

1.77 2.30 2.44 2.06 3.33 0.26 0.19 4.09

2.69 -0.69 3.35 1.78 3.56 4.19 0.71 1.15

1.10 0.03 1.67 3.50 -1.51 3.16 0.18 -1.62

0.81 3.05 3.31 3.25 4.32 0.02 -2.65 0.79

0.07 1.51 1.30 2.49 -1.45 2.18 -0.03 3.27

1.21 -1.62 2.49 0.72 3.60 0.83 -0.67 2.11

3.15 1.83 3.02 0.27 0.61 6.20 -1.20 0.76

-1.34 0.68 -0.22 1.73 0.67 1.17 0.69 0.51

2.01 3.43 0.05 0.25 1.35 2.10 -0.29 -0.35

-0.22 2.33 1.67 2.72 3.85 0.15 1.16 2.09

2.14 1.93 -1.11 2.30 -1.10 1.21 2.00 -0.48

0.34 0.25 2.35 1.31 0.11 3.29 3.36 2.78

1.91 4.10 2.28 0.89 3.27 3.25 3.06 0.25

3.25 -0.28 0.80 0.17 0.69 2.63 2.36 3.52

Максимальное значение: 6.20

Минимальное значение: -2.65

Последовательность модуля CB с нормальным

законом распределения

2.79 1.48 0.18 2.84 0.51 1.90 0.83 0.84

1.50 0.43 3.67 1.30 2.61 1.22 1.24 0.49

2.14 0.16 2.01 4.72 3.08 1.14 0.84 0.24

0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

1.14 0.77 1.68 0.70 3.02 2.26 1.50 1.50

0.19 0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 0.56 1.77 0.77 1.21 2.08

0.53 0.03 0.78 0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 0.49 2.06 0.64 2.29

0.02 3.78 3.66 1.13 1.46 4.10 2.95 1.94

0.31 2.14 1.84 0.40 0.84 1.89 1.88 3.47

2.51 0.50 1.05 2.15 2.54 1.27 1.61 0.32

2.33 4.57 2.84 4.60 1.74 0.81 1.28 0.98

1.84 0.64 2.18 2.20 1.01 2.29 0.35 1.35

3.48 3.82 0.07 1.14 1.99 0.52 4.42 0.34

1.43 0.90 1.96 1.30 0.26 1.04 3.47 3.58

0.95 1.68 0.60 4.30 0.96 1.19 1.94 1.23

0.76 1.84 0.05 0.69 1.18 1.68 1.04 1.07

2.87 1.66 0.96 2.88 4.11 0.49 0.82 1.71

0.67 0.06 0.98 3.26 2.56 1.49 3.09 1.43

1.77 2.30 2.44 2.06 3.33 0.26 0.19 4.09

2.69 0.69 3.35 1.78 3.56 4.19 0.71 1.15

2.79 1.48 0.18 2.84 0.51 1.90 0.83 0.84

1.50 0.43 3.67 1.30 2.61 1.22 1.24 0.49

2.14 0.16 2.01 4.72 3.08 1.14 0.84 0.24

0.63 2.18 1.38 2.30 0.42 3.69 1.99 0.38

1.14 0.77 1.68 0.70 3.02 2.26 1.50 1.50

0.19 0.19 1.61 1.92 2.63 0.76 1.28 1.90

4.41 0.64 0.88 2.30 1.07 0.39 3.11 3.44

0.84 2.05 0.07 0.56 1.77 0.77 1.21 2.08

0.53 0.03 0.78 0.64 1.40 0.93 0.32 0.42

2.62 2.26 4.79 1.95 1.31 2.36 1.66 2.06

2.20 1.08 0.90 2.95 2.97 3.36 1.08 3.21

2.61 4.01 5.84 1.67 0.49 2.06 0.64 2.29

0.02 3.78 3.66 1.13

Максимальное значение: 5.84

Минимальное значение: 0.02

Kоличество чисел

Чacтoтa пoпaдaния

Bыcoтa cтoлбикa гиcтoгpaммы

1:

2:

3:

4:

5:

6:

71

81

59

35

16

2

0.237

0.270

0.197

0.117

0.053

0.007

0.244

0.278

0.203

0.120

0.055

0.007

Числовые характеристики:

Среднестатистическое значение xl=1.664

Статистическая дисперсия Dxs=1.291

СреднестатистическоеотклонениеGxs=1.136

СкошенностьSks=1.193

Островершинность Exs= 0.449

Задание №3: Проверка критерием Х2: имеет ли данный массив соответствующий закон распределения

Гистограмма и сглаживающая функция

r=k-3=6-3=3,

Вывод: Нет оснований принять гипотезу о распределении модуля случайной величины, распределенной по нормальному закону, так как

Список используемой литературы

  1. «Теория вероятностей» В.С. Вентцель

  2. «Теория вероятностей (Задачи и Упражнения)» В.С. Вентцель, Л.А. Овчаров

  3. «Справочник по вероятностным расчётам»

  4. «Теория вероятностей и математическая статистика» В.Е. Гмурман

  5. «Руководство к решению задач по теории вероятностей и математической статистике» В.Е. Гмурман

Характеристики

Тип файла
Документ
Размер
8,02 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6597
Авторов
на СтудИзбе
296
Средний доход
с одного платного файла
Обучение Подробнее