85827 (612587), страница 2

Файл №612587 85827 (Решетки субнормальных и f-субнормальных подгрупп) 2 страница85827 (612587) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Доказательство. Пусть – множество всех субнормальных -подгрупп из . Ввиду теоремы 1.12 легко заметить, что удовлетворяет условиям 1) и 2) теоремы 1.13.

Следствие. Для любой субнормальной подгруппы группы справедливы следующие утверждения:

1) если -группа, то ;

2) если нильпотентна, то ;

3) если -нильпотентна, то ;

4) если разрешима, то .

2. Минимальные не -группы

Лемма [3]. Пусть , где – локальная формация. Тогда справедливы следующие утверждения:

1) группа монолитична с монолитом

2) -группа для некоторого простого ;

3) -эксцентральный главный фактор ;

4) ;

5) если группа неабелева, то ее центр, коммутант и подгруппы Фраттини совпадают и имеют экспоненту ;

6) если абелева, то она элементарна;

7) если , то – экспонента ; при экспонента не превышает 4;

8) для любой -абнормальной максимальной подгруппы из имеет место

9) любые две -абнормальные максимальные подгруппы группы сопряжены в ;

10) если и подгруппа содержит , то для любого полного локального экрана формации ;

11) если -абнормальная максимальная подгруппа группы и – некоторый полный локальный экран , то – минимальная не -группа и либо , либо .

Доказательство. 1) Пусть – минимальная нормальная подгруппа из такая, что . Очевидно, что . Противоречие. Итак, – минимальная нормальная подгруппа . Так как – формация, то, нетрудно заметить, что – единственная минимальная нормальная подгруппа из . А это значит, что

Отсюда следует, что

2) Выше мы показали, что – главный -фактор. Покажем, что -группа. Предположим противное. Пусть простое число делит , но не делит . По лемме 4.4 из [5] , где – содержащаяся в силовская -подгруппа из . Тогда

Отсюда и из насыщенности получим . Но тогда , что невозможно.

Пусть – главный фактор группы . Ввиду 2) является -группой и . Следовательно, каждая -абнормальная масимальная подгруппа группы является -нормализатором группы . Так как -нормализатор группы покрывает только -центральные главные факторы, то мы получаем, что -гиперцентральна в . Согласно следствию 9.3.1 из [5] . Отсюда следует, что , т.е. .

Обозначим через коммутант группы . Так как -корадикал группы , то по теореме 11.6 из [5] каждый главный фактор группы на участке от до -эксцентрален. Отсюда и из -гиперцентральности заключаем, что . Так как

то мы получаем тaкже рaвенство . Таким образом, утверждения 2) – 6), 9) доказаны.

Докажем 7). Предположим, что неабелева. Пусть – произвольный элемент из . Ввиду 4) , причем . Следовательно,

для всех элементов , из . Это означает, что имеет экспоненту . Учитывая это и то, что содержится в , получаем для любых , из при :

Значит, отображение является -эндоморфизмом группы . Так как

то -гиперцентральна в . Вспоминая, что -эксцентральный главный фактор, получаем равенство . Так как имеет экспоненту , то утверждение 7) при доказано.

Пусть . Тогда

где . Рассматривая отображение как и выше получаем, что . Значит имеет экспоненту не больше 4.

Докажем 8). Выше мы доказали, что . Пусть . Тогда в найдется такая максимальная подгруппа , что . Так как , то . Отсюда . Противоречие. Итак, . По теореме 9.4 из [5] имеем для любой -абнормальной максимальной подгруппы группы . Нетрудно показать, что .

По теореме 7.11 из [5],

Так как , то

Ввиду того, что и – главный фактор , имеем . Итак, . Пусть – любая -абнормальная максимальная подгруппа группы . Тогда . Ясно, что

Не ограничивая общности, положим . Тогда – единственная минимальная нормальная подгруппа . Легко видеть, что и . Но -группа. Значит, . По условию . Следовательно, ввиду полноты экрана имеет место

то . Таким образом, всякая собственная подгруппа группы принадлежит . Допустим, что . Тогда

и поэтому . Полученное противоречие показывает, что , т.е. – минимальная не -группа.

Предположим теперь, что . Покажем, что . Не теряя общности, можно положить, что . Тогда , . Пусть , где и , где . Для всякого через обозначим подгруппу . Предположим, что все отличны от . Так как , то – дополнение к в . Если для всех различных и , то

и поэтому . Противоречие. Значит для некоторых различных и . Из последнего вытекает

что невозможно. Полученное противоречие показывает, что для некоторого и, следовательно, . Лемма доказана.

Лемма [4]. Пусть – наследственная локальная формация, – такая нормальная подгруппа группы , что . Тогда равносильно .

Доказательство. Пусть . Тогда , и если – произвольная максимальная подгруппа , то , а значит, и принадлежит . Следовательно, .

Предположим теперь, что . Понятно, что .Пусть – произвольная максимальная подгруппа , тогда . Пусть – произвольный -главный фактор из . Обозначим . Пусть – максимальный внутренний локальный экран формации , и пусть . Так как , то . Покажем, что . По лемме 8.7 из [6] формация наследственна. Следовательно, если , то сразу получим . Если же , то вытекает из изоморфизма . Итак, всякий -главный фактор из , -централен в . Значит, . Таким образом, . Лемма доказана.

Лемма [3]. Пусть – локальная наследственная формация, – некоторый ее полный экран. Группа принадлежит тогда и только тогда, когда выполняются следующие два условия:

1) ;

2) , где – главный -фактор группы , – минимальная не -группа.

Доказательство. Необходимость вытекает из леммы 2.1.

Достаточность. Пусть и – произвольные максимальные подгруппы . Покажем, что . Если -абнормальна, то ввиду леммы 2.1 имеем . Значит, . Пусть . По условию

Следовательно, и по лемме 2.1 -группа. Значит по лемме 8.2 из [6] . Итак, . Применяя теперь лемму 2.1 получаем, что . Лемма доказана.

Лемма [3]. Пусть – локальная формация, имеющая постоянный наследственный локальный экран . Тогда справедливы следующие утверждения:

1) для любого из ;

2) тогда и только тогда, когда для любого из , – главный фактор , .

Доказательство. 1) Пусть – произвольная группа из . Покажем, что . Предположим противное. Пусть – подгруппа наименьшего порядка из , не принадлежащая . Очевидно, что . Так как – постоянный экран, то ввиду леммы 4.5 из [5] для любого из . Если , то из того, что следует . Получили противоречие. Итак, – собственная подгруппа из . Но тогда , что невозможно.

2) Пусть . Покажем, что . Так как

то, не ограничивая общности, можно считать, что . Пусть – произвольная -абнормальная максимальная подгруппа группы . Тогда по лемме 2.1 , где . Очевидно, что . Отсюда следует, что -группа. Так как и – постоянный экран, то . Пусть – произвольная собственная подгруппа из . Так как формация наследственна, то . Кроме того, . Отсюда . Следовательно,

Если теперь , то . Отсюда нетрудно заметить, что . Противоречие. Итак, . Из леммы 2.1 следует, что

есть главный -фактор группы .

Пусть теперь . Очевидно, что . Пусть – собственная подгруппа из .Рассмотрим подгруппу . Если , то тогда

Согласно пункту 1 . Пусть . Тогда – собственная подгруппа группы . Тогда

Отсюда . А это значит, что . Итак, . Так как , то по лемме 2.1 . Лемма доказана.

Лемма. Пусть – непустая наследственная формация. Тогда:

1) если – подгруппа группы и , то -субнормальна в ;

2) если -субнормальна в , – подгруппа группы , то -субнормальна в ;

3) если и -субнормальные подгруппы , то -субнормальная подгруппа ;

4) если -субнормальна в , а -субнормальна в , то -субнормальна в ;

5) если все композиционные факторы группы принадлежат формации , то каждая субнормальная подгруппа группы является -субнормальной;

6) если -субнормальная подгруппа группы , то -субнормальна в для любых .

Лемма. Пусть – непустая формация, – подгруппа группы , – нормальная подгруппа из . Тогда:

1) если -субнормальна в , то -субнормальна в и -субнормальна в ;

2) если , то -субнормальна в тогда и только тогда, когда -субнормальна в .

Характеристики

Тип файла
Документ
Размер
14,15 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее