85764 (612568), страница 2

Файл №612568 85764 (Математична логіка) 2 страница85764 (612568) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Для знаходження значення істинності складного висловлювання потрібно надати значення істинності всім атомам, які містить формула. Надання значень істинності всім атомам формули називають її інтерпретацією. У разі обчислення значень істинності формул, які зображають складні висловлювання, потрібно знаходити значення логічних зв'язок згідно з правилами, визначеними в табл. 1.1. Послідовність обчислень визначають парами дужок, які містить складне висловлювання. Якщо формула має n атомів, то існує 2n способів надати значення істинності її атомам, тобто така формула має 2n інтерпретацій, а всі її значення можна звести в таблицю істинності з 2n рядками. Формулу, яка містить n атомів, називають n-місною. У разі n=1 формула одномісна.

Формулу f називають виконаною , якщо існує принаймні одна інтерпретація, у якій f набуває значення Т. У такому разі кажуть, що формула f виконується (або виконана) у цій інтерпретації.

Приклад 1.10. Розглянемо формулу (р g)→(р~ ). Оскільки кожному з атомів р, g та r можна надати 2 значення - F або Т, то задана формула має 23=8 інтерпретацій. Для прикладу, обчислимо значення істинності заданої формули для значень істинності атомів p, g та r, які дорівнюють F, Т та F, відповідно. Це задає одну з інтерпретацій формули. Тоді (р g) має значення F, оскільки р фальшиве; має значення Т, оскільки r фальшиве; (р~r) фальшиве, оскільки р фальшиве, а істинне; нарешті ((р g)→(р~ )) істинне, оскільки (р g) фальшиве. Отже, задана формула виконується у цій інтерпретації, оскільки набуває значення Т. Значення істинності формули (р g)→(р~ ) у всіх її інтерпретаціях наведено в табл. 1.3.

Формулу f логіки висловлювань називають загальнозначущою, або тавтологією, якщо вона виконується в усіх інтерпретаціях (позначають ╞f). Формулу, фальшиву в усіх її інтерпретаціях, називають заперечуваною, невиконанною, або протиріччям.

Оскільки кожна формула логіки висловлювань має скінченну кількість інтерпретацій, то завжди можна перевірити її загально-значущість чи заперечуваність знаходженням її значень істинності в усіх інтерпретаціях.

Таблиця 1.3

p

g

r

(p g)

(р~ )

g)→(р~ )

T

T

T

F

T

F

F

T

T

F

T

T

T

T

T

F

T

F

F

F

T

T

F

F

T

F

T

T

F

T

T

F

F

T

T

F

T

F

T

F

F

T

F

F

T

F

F

T

T

F

F

F

T

F

F

T

Приклад 1.11. Розглянемо формулу ((р→g) p)→g. Атомами в цій формулі є р та g, а формула має 22=4 інтерпретації. Значення істинності заданої формули наведено в табл. 1.4. Задана формула істинна в усіх її інтерпретаціях, тобто вона - тавтологія.

Таблиця 1.4

p

g

(р→g)

(р→g) p

((р→g) p)→g

T

T

T

T

T

T

F

F

F

T

F

F

T

F

T

F

F

T

F

T

Приклад 1.12. Розглянемо формулу (р→g) ). З табл. 1.5 робимо висновок, що задана формула фальшива в усіх інтерпретаціях, тобто заперечувана.

Таблиця 1.5

p

g

(р→g)

р

(р→g) )

T

T

T

F

F

F

T

F

F

T

T

F

F

T

T

F

F

F

F

F

T

T

F

F

1.2. Закони логіки висловлювань

Формули f та g еквівалентні, або рівносильні, тотожні (позначають f=g), якщо значення істинності формул f та g збігаються в усіх інтерпретаціях цих формул. Властивість еквівалентності формул f та g можна сформулювати у вигляді такого твердження.

Теорема 1.1. Формули f та g еквівалентні тоді й лише тоді, коли формула (f~g) загальнозначуща, тобто ╞f~g.

Приклад 1.13. За допомогою таблиці істинності покажемо, що p→g= g. Результат розв'язування задачі наведено у таблиці 1.6.

Таблиця 1.6

p

g

p→g

g

(p→g)~( g)

T

T

T

F

T

T

T

F

F

F

F

T

F

T

T

T

T

T

F

F

T

T

T

T

Приклад 1.14. За допомогою таблиці істинності покажемо, що p→g≠g→p. Результат розв'язування задачі наведено у табл. 1.7.

Таблиця 1.7

p

g

p→g

g→p

(p→g)~(g→p)

T

T

T

T

T

T

F

F

T

F

F

T

T

F

F

F

F

T

T

T

Розглянемо еквівалентні формули, які визначають правила перетворень. Такі еквівалентності називають законами логіки висловлювань. Перетворення виконують заміною деякої формули у складі іншої формули на еквівалентну їй формулу. Цю процедуру повторюють доти, поки не буде отримано формулу в потрібній формі. Основні закони логіки висловлювань наведено у табл. 1.8.

Наступні два правила дозволяють вилучати зв'язки еквівалентності та імплікації з формул і перетворювати їх у формули, які таких зв'язок не містять: р~g=(p→g) (g→p) та p→g= g (див. приклад 1.13). Ці правила також можна використовувати для введення імплікації та еквівалентності.

Таблиця 1.8

Назва законів

Формулювання законів

1.

Закони комутативності

а) р g=g p

б) р g=g p

2.

Закони асоціативності

а) (р g) r=р (g r)

б) (р g) r=р (g r)

3.

Закони дистрибутивності

а) р (g r)=(p g) (p r)

б) р (g r)=(p g) (p r)

4.

Закон протиріччя

р =F

5.

Закон виключеного третього

р =T

6.

Закон подвійного заперечення

7.

Закони ідемпотентності

а) р p=p

б) p p=p

8.

Закони де Моргана

а) =

б) =

9.

Закони поглинання

а) (р g) р=р

б) (р g) p=р

10.

Співвідношёення для сталих

а) p T=T

б) p T=p

в) р F=p

г) p F=F

Наведені еквівалентності можна перевірити побудовою таблиць істинності. Приклад 1.14 свідчить, що імплікація не комутативна. Покажемо, як застосувати закони логіки висловлювань для доведення еквівалентності формул.

Приклад 1.15. Застосуванням законів логіки висловлювань доведемо еквівалентність формул р→(g r) та (p→g) (p→r). Випишемо послідовність перетворень та запишемо біля кожного рядка назву застосованого закону або правила.

Характеристики

Тип файла
Документ
Размер
4,42 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6740
Авторов
на СтудИзбе
284
Средний доход
с одного платного файла
Обучение Подробнее