85759 (612564)

Файл №612564 85759 (Математическое моделирование в задачах расчета и проектирования систем автоматического управления)85759 (612564)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Московский государственный технический университет им. Н.Э. Баумана

Калужский филиал

Кафедра “САУ и Электротехники”

ЭИУ3-КФ

Расчётно-пояснительная записка к курсовой работе

на тему:

“ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЗАДАЧАХ РАСЧЕТА И ПРОЕКТИРОВАНИЯ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ”

по курсу:

Системы аналитических вычислений

Калуга

Содержание

1 Постановка задачи

2 Анализ устойчивости

3 Решение дифференциального уравнения интерполяционным методом Адамса

4 Синтез

Вывод

Список литературы

Приложение 1 (Листинг скрипта для нахождения корней полинома)

Приложение 2 (Листинг скрипта для решения дифференциального уравнения

численным методом)

Приложение 3 (Листинг скриптов для нахождения коэффициентов регулятора)

1 Постановка задачи

Требуется:

1. Выполнить анализ устойчивости работы нескорректированной системы управления.

2. Выполнить анализ функционирования системы

3. Синтезировать регулятор для системы управления.

4. Выполнить анализ работы скорректированной системы управления.

Структурная схема системы приведена на рис. 1.

Рис. 1. Структурная схема контура стабилизации угла тангажа

Параметры системы имеют следующие значения:

Требования к системе:

2 Анализ устойчивости

Выполним анализ нескорректированной системы с использованием критериев Михайлова и Гурвица.

Найдем передаточную функцию всей системы

Составим матрицу Гурвица

a0=1; a1=7.4; a2=19; a3=10;

По критерию Гурвица для того, чтобы система была устойчива необходимо и достаточно, чтобы все определители на главной диагонали были больше нуля Найдем все миноры на главной диагонали:

Система устойчива.

Критерий Михайлова:

Из условия

Получаем, что система устойчива.

Построим годограф разомкнутой системы и найдем запас устойчивости.

На рис. 2 приведен график АФЧХ разомкнутой системы и единичная окружность.

Рис. 2.Годограф АФЧХ разомкнутой системы

По рис. 2 легко определить запас устойчивости замкнутой системы.

Нахождение корней характеристического уравнения методом градиентов.

Найдем корни передаточной функции с помощью метода градиентов.

Рабочая формула используемого метода имеет следующий вид

где

и векторы неизвестных на шаге k+1 и k.

- транспонированная матрица Якоби, вычисленная на шаге k.

Невязка на шаге k

Шаговый множитель

Находим полюса для передаточной функции, имеющий вид

Текст программы приведен в приложении 1.

Результат приведен на рис.3

Рис. 3. Пример нахождения полюсов ПФ W(s)

Аналитические выражения для переходной и импульсной переходной функций, АЧХ, ФЧХ, АФЧХ

Найдем импульсную переходную функцию.

График k(t) приведен на рис. 4.

Рис. 4. График импульсной переходной функции.

Найдем переходную функцию.

График h(t) приведен на рис. 5.

Рис. 5. График переходной функции.

Найдем амплитудно-частотную характеристику.

График АЧХ приведен на рис. 6.

Рис. 6. График АЧХ

Найдем ФЧХ:

График ФЧХ приведен на рис. 7.

Рис. 7. График ФЧХ

Найдем АФЧХ.

График ФЧХ приведен на рис. 8.

Рис. 8. График АФЧХ

Вывод: Система является устойчивой, перерегулирование равно 0, время управления примерно равно 5с.

3 Решение дифференциального уравнения интерполяционным методом Адамса

Так как ДУ заданной системы имеет третий порядок, то его необходимо свести к системе уравнений, каждое из которых должно иметь первый порядок, т.е. имеет место нормальная форма Коши:

Запишем нормальную форму Коши в следующем виде:

Приведём уравнение к нормальной форме Коши:

Интерполяционный метод Адамса 3:

, точность

Для того, чтобы использовать этот неявный метод, нужно знать

Получим методом Эйлера: точность

Для получения точности на первом шаге, возьмем

Текст программы находится в приложении 2.

Результаты работы программы при h равных 0.5, 0.2, 0.01 приведены на рис. 9.

Рис. 9. Отклики на единичное ступенчатое воздействие

4 Синтез

Введем в прямую цепь ПИД регулятор, а в обратную ПД.

Вид скорректированной системы приведен на рис. 10.

Рис.10. Структурная схема скорректированной системы

Найдем передаточную функцию системы

Передаточная функция разомкнутой цепи имеет вид:

Передаточная функция разомкнутой цепи имеет вид:

Для решения задачи синтеза необходимо найти параметра регулятора, при которых реальный выходной сигнал, являющийся реакцией на единичное ступенчатое воздействие, будет близок к заданному эталонному сигналу.

В качестве эталонного выходного сигнала используем следующий сигнал:

,

Коэффициент находим по следующей формуле:

Найдем параметры регулятора методом квадратичной аппроксимации.

Рабочая формула метода имеет вид:

Где,

градиент функции.

матрица Гессе функции

находим с помощью метода Золотого сечения.

Текст программы находится в приложении 3.

Результат работы программы приведен на рис. 11.

Рис. 11. Пример получения коэффициентов регулятора.

Переходная функция скорректированной системы изображена на рис. 12.

Время управления скорректированной системы исходя из графика примерно равно 2.4с.

Рис. 12. Сравнение эталонной и реальной переходных функций

Вывод

В данной курсовой работе был синтезирован регулятор САУ, найдены его параметры численным методом. Также было решено дифференциальное уравнение неявным численным методом.

Список литературы

1. Методы классической и современной теории автоматического управления: Учебник в 5-ти т.; 2-е изд., перераб. и доп. Т.3: Синтез регуляторов систем автоматического управления / Под редакцией К.А. Пупкова и Н.Д. Егупова. – М.: Издательство МГТУ им. Н.Э. Баумана, 2004. – 616с.; ил.

2. Н.Д. Егупов, Ю.П. Корнюшин, Ю.И. Мышляев. Учебное пособие по выполнению курсового проектирования по дисциплине «Системы аналитических вычислений» для студентов специальности 160403 «Системы управления летательными аппаратами»

Приложение 1

Метод градиентов

function M_Gradientov

clc

% Решим уравнение s^3+7,4*s^2+19*s+10=0

e=10^-4;

s=0;

A1=1;

A2=7.4;

A3=19;

A4=10;

r0=1;

i=0; %количество итераций

while abs(r0)>e

i=i+1;

s0=s;

r0=A1*s^3+A2*s^2+A3*s+A4; %невязка

Ar=(A1+A2+A3)*r0;

AAr=(A1^2+A2^2+A3^3)*r0;

m=r0*AAr/AAr^2;

s=s0-m*Ar;

end

S1=s; % Нашли вешественный корень

Теперь решаем уранение: A1*s^2+(A2+A1*S1)*s+(A3+A2*S1+A1*s^2)=0

% Корни комплексные

D=(A2+A1*S1)^2-4*A1*(A3+A2*S1+A1*s^2);

S2=(-(A2+A1*S1)+sqrt(D))/2*A1;

S3=(-(A2+A1*S1)-sqrt(D))/2*A1;

disp(S1);

disp(S2);

disp(S3);

disp('Количество итераций'); disp(i);

Приложение 2

Интерполяционный метод Адамса

function Int_Adams_3

clc

%время переходного процесса

T=10;

%-----------------%

%матрица А (X'=AX+BY)

A=[0 1 0;

0 0 1;

-10 -19 -7.4];

%матрица B

B=[0 5 10]';

Y=[0 0 1]';

k=1;

%начальные условия

X(1,1:3)=[0 0 0];

I=[1 0 0; 0 1 0; 0 0 1];

while(k<=3)

%шаг

if(k==1) h=0.1; end;

if(k==2) h=1; end;

if(k==3) h=0.01; end;

%---------------------------%

n=1;

F(1,1:3)=(A*(X(1,1:3))'+B.*Y)';

X(n+1,1:3)=(X(n,1:3)'+h/10*(F(n,1:3))')';% Метод Эйлера

n=n+1;

while (n<=T/h)

F(n,1:3)=(A*(X(n,1:3))'+B.*Y)';

X(n+1,1:3)=(((I-5*h/12*A)^-1)*(X(n,1:3)'+h/12*(5*B.*Y+8*(F(n,1:3))'-(F(n-1,1:3))')))';

n=n+1;

end

t=0:h:10;

%k=t/h+1;

i=1;

while(i<=n)

if(k==1) t1=t; x1(i)=X(i,1); Xa1=1-0.9202*exp(-0.6983*t)-0.4636*exp(-3.3508*t).*cos(1.7584*t+4.382)+0.2433*exp(-3.3508*t).*sin(1.7584*t+4.382); end;

if(k==2) t2=t; x2(i)=X(i,1); Xa2=1-0.9202*exp(-0.6983*t)-0.4636*exp(-3.3508*t).*cos(1.7584*t+4.382)+0.2433*exp(-3.3508*t).*sin(1.7584*t+4.382); end;

if(k==3) t3=t; x3(i)=X(i,1); Xa3=1-0.9202*exp(-0.6983*t)-0.4636*exp(-3.3508*t).*cos(1.7584*t+4.382)+0.2433*exp(-3.3508*t).*sin(1.7584*t+4.382);

end;

i=i+1;

end

k=k+1;

end

t=0:0.01:10;

Xa=1-0.9202*exp(-0.6983*t)-0.4636*exp(-3.3508*t).*cos(1.7584*t+4.382)+0.2433*exp(-3.3508*t).*sin(1.7584*t+4.382);

plot(t,Xa,t1,x1,t1,(Xa1-x1),t2,x2,t2,(Xa2-x2),t3,x3,t3,(Xa3-x3)),grid on

Приложение3

Оптимизация методом квадратичной аппроксимации

function minK

%зададим точность и шаг

eps=0.1;

h=0.1;

%определим матрицу K=[Kp,Kd,Ki,Kp2,Kd2]';

T=4;

K0=[26 6 50 1 0.2]';

%Найдем J0

J0=Xr5(26, 6, 50, 1 ,0.2,T);

%------------------------

%Ищем матрицу G

a=Xr5(K0(1),K0(2),K0(3),K0(4),K0(5),T);

g11=(Xr5(K0(1)+2*h,K0(2),K0(3),K0(4),K0(5),T)-2*Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5),T)+a)/h^2;

g12=(Xr5(K0(1)+h,K0(2)+h,K0(3),K0(4),K0(5),T)-Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5),T)+a)/h^2;

g21=g12;

g13=(Xr5(K0(1)+h,K0(2),K0(3)+h,K0(4),K0(5),T)-Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5),T)+a)/h^2;

g31=g13;

g14=(Xr5(K0(1)+h,K0(2),K0(3),K0(4)+h,K0(5),T)-Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5),T)+a)/h^2;

g41=g14;

g15=(Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5)+h,T)-Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h,T)+a)/h^2;

g51=g15;

g22=(Xr5(K0(1),K0(2)+2*h,K0(3),K0(4),K0(5),T)-2*Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5),T)+a)/h^2;

g23=(Xr5(K0(1),K0(2)+h,K0(3)+h,K0(4),K0(5),T)-Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5),T)+a)/h^2;

g32=g23;

g24=(Xr5(K0(1),K0(2)+h,K0(3),K0(4)+h,K0(5),T)-Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5),T)+a)/h^2;

g42=g24;

g25=(Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5)+h,T)-Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h,T)+a)/h^2;

g52=g25;

g33=(Xr5(K0(1),K0(2),K0(3)+2*h,K0(4),K0(5),T)-2*Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5),T)+a)/h^2;

g34=(Xr5(K0(1),K0(2),K0(3)+h,K0(4)+h,K0(5),T)-Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5),T)+a)/h^2;

g43=g34;

g35=(Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5)+h,T)-Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h,T)+a)/h^2;

g53=g35;

g44=(Xr5(K0(1),K0(2),K0(3),K0(4)+2*h,K0(5),T)-2*Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5),T)+a)/h^2;

g45=(Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5)+h,T)-Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5),T)-Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h,T)+a)/h^2;

g54=g45;

g55=(Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+2*h,T)-2*Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h,T)+a)/h^2;

G=[g11, g12, g13, g14, g15; g21, g22, g23, g24, g25; g31, g32 ,g33, g34, g35; g41, g42 ,g43, g44, g45; g51, g52 ,g53, g54, g55;];

%G1=G.^-1;

G1=inv(G);

%построим градиент

gr1=(Xr5(K0(1)+h,K0(2),K0(3),K0(4),K0(5), T)-a)/h;

gr2=(Xr5(K0(1),K0(2)+h,K0(3),K0(4),K0(5), T)-a)/h;

gr3=(Xr5(K0(1),K0(2),K0(3)+h,K0(4),K0(5), T)-a)/h;

gr4=(Xr5(K0(1),K0(2),K0(3),K0(4)+h,K0(5), T)-a)/h;

gr5=(Xr5(K0(1),K0(2),K0(3),K0(4),K0(5)+h, T)-a)/h;

grad=[gr1 gr2 gr3 gr4 gr5]';

L=lambdamin(K0,G1,grad);

K=K0+L*G1*grad;

G10=G1;

grad0=grad;

J=Xr5(K(1),K(2),K(3),K(4),K(5),T);

% квадратичная аппроксимация: X(i+1)=X(i)-L(i)G^-1(i)GRAD(x(i))

while (J0>J)

J0=J;

%Ищем матрицу G

a=Xr5(K(1),K(2),K(3),K(4),K(5),T);

g11=(Xr5(K(1)+2*h,K(2),K(3),K(4),K(5),T)-2*Xr5(K(1)+h,K(2),K(3),K(4),K(5),T)+a)/h^2;

g12=(Xr5(K(1)+h,K(2)+h,K(3),K(4),K(5),T)-Xr5(K(1)+h,K(2),K(3),K(4),K(5),T)-Xr5(K(1),K(2)+h,K(3),K(4),K(5),T)+a)/h^2;

g21=g12;

g13=(Xr5(K(1)+h,K(2),K(3)+h,K(4),K(5),T)-Xr5(K(1)+h,K(2),K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3)+h,K(4),K(5),T)+a)/h^2;

g31=g13;

g14=(Xr5(K(1)+h,K(2),K(3),K(4)+h,K(5),T)-Xr5(K(1)+h,K(2),K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4)+h,K(5),T)+a)/h^2;

g41=g14;

g15=(Xr5(K(1)+h,K(2),K(3),K(4),K(5)+h,T)-Xr5(K(1)+h,K(2),K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4),K(5)+h,T)+a)/h^2;

g51=g15;

g22=(Xr5(K(1),K(2)+2*h,K(3),K(4),K(5),T)-2*Xr5(K(1),K(2)+h,K(3),K(4),K(5),T)+a)/h^2;

g23=(Xr5(K(1),K(2)+h,K(3)+h,K(4),K(5),T)-Xr5(K(1),K(2)+h,K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3)+h,K(4),K(5),T)+a)/h^2;

g32=g23;

g24=(Xr5(K(1),K(2)+h,K(3),K(4)+h,K(5),T)-Xr5(K(1),K(2)+h,K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4)+h,K(5),T)+a)/h^2;

g42=g24;

g25=(Xr5(K(1),K(2)+h,K(3),K(4),K(5)+h,T)-Xr5(K(1),K(2)+h,K(3),K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4),K(5)+h,T)+a)/h^2;

g52=g25;

g33=(Xr5(K(1),K(2),K(3)+2*h,K(4),K(5),T)-2*Xr5(K(1),K(2),K(3)+h,K(4),K(5),T)+a)/h^2;

g34=(Xr5(K(1),K(2),K(3)+h,K(4)+h,K(5),T)-Xr5(K(1),K(2),K(3)+h,K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4)+h,K(5),T)+a)/h^2;

g43=g34;

g35=(Xr5(K(1),K(2),K(3)+h,K(4),K(5)+h,T)-Xr5(K(1),K(2),K(3)+h,K(4),K(5),T)-Xr5(K(1),K(2),K(3),K(4),K(5)+h,T)+a)/h^2;

g53=g35;

g44=(Xr5(K(1),K(2),K(3),K(4)+2*h,K(5),T)-2*Xr5(K(1),K(2),K(3),K(4)+h,K(5),T)+a)/h^2;

g45=(Xr5(K(1),K(2),K(3),K(4)+h,K(5)+h,T)-Xr5(K(1),K(2),K(3),K(4)+h,K(5),T)-Xr5(K(1),K(2),K(3),K(4),K(5)+h,T)+a)/h^2;

g54=g45;

g55=(Xr5(K(1),K(2),K(3),K(4),K(5)+2*h,T)-2*Xr5(K(1),K(2),K(3),K(4),K(5)+h,T)+a)/h^2;

G=[g11, g12, g13, g14, g15; g21, g22, g23, g24, g25; g31, g32 ,g33, g34, g35; g41, g42 ,g43, g44, g45; g51, g52 ,g53, g54, g55;];

%G1=G.^-1;

Характеристики

Тип файла
Документ
Размер
4,64 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее