85721 (612560), страница 4
Текст из файла (страница 4)
Рис. 26.
Такие задачи могут иметь несколько ответов: число разветвлений в схеме (т.е. количествопринимаемых гипотез) может быть значительно большим, но принцип решения остается таким же. Иногда для решения задачи необязательно заполнять все клетки таблицы, как в приведенном примере.
1.2 Тактические задачи
Решение тактических и теоретико-множественных задач заключается в составлении учащимися плана действий, который приводит к правильному ответу. Сложность состоит в том, что выбор нужно сделать из очень большого числа вариантов, т.е. эти возможности не известны учащимся, их нужно придумать.
а)Задачи на перемещение или правильное размещение фигур учащиеся могут решать двумя способами: практическим (действия в перемещении фигур, подборе) и мысленном (обдумывание хода, предугадывание результата, предположение решения). Анализ соотношения способов решения показывает, что практический метод свойственен детям младшей школы. Школьники среднего звена осуществляют поиск решения путем сочетания мысленных и практических действий или только мысленно. Это дает основание для утверждения о возможности приобщения младших школьников к творческой деятельности в ходе решения логических задач. У детей формируется умение вести поиск решения путем предположения, догадки, рассуждений. Рассмотрим простую задачу.
Задача 10. «Иванушка и коварная принцесса».
- Задаю тебе последнюю задачу, - сказала принцесса Иванушке, - найди единственно верный путь из этой комнаты в наш зимний сад и сорви для меня самую красивую розу. Из этой комнаты ты пройдешь через левую, или правую, или среднюю дверь во вторую комнату; такие же три вида дверей будут перед тобой при переходе из второй комнаты в третью и из третей – в сад. Учти мои советы, - продолжала принцесса, - первый: из этого зала пройди через правую дверь; второй: из второй комнаты – не через правую дверь, и третий совет: из третей – не через левую дверь. Иванушка знал, что обычно из трех советов принцессы ровно в двух указывают ложное направление, кроме того, служанка принцессы успела шепнуть ему, что надо пройти через дверь каждого вида по одному разу. Как и полагается сказке, принес Иванушка розу и был вознагражден. Какой же маршрут оказался верным?
Решение. Для решения этой задачи нужно рассмотреть всевозможные маршруты, т. к. на избранном пути не должно быть одинаково расположенных дверей, то возможно лишь 6 различных маршрутов (3!). Воспользуемся графами (рис. 27). «Плюс» на соединительном отрезке означает правильный, а «минус» - ложный ответ принцессы. Так как верен один совет, то правильный маршрут тот, который отмечен одним знаком «+» и двумя «-», а именно Л – П – С.
+ – +
П С Л
+ + – + – +
С Л П Л П С
– + – + + +
Л С Л П С П
Рис. 27.
В следующей задаче может быть использована магнитная доска или объемные фигурки зверей, которые можно передвигать по клеткам.
Задача 11. Все звери в зоопарке находятся не в своих клетках. Служителю необходимо как можно быстрее разместить животных по их клеткам. Какое наименьшее число «переселений» должен сделать служитель зоопарка? Учтите, что зверей нельзя помещать вдвоем в одну клетку, так как звери – хишники (рис. 28).
| Надпись на клетке | Лев | Олень | Волк | Крокодил | Леопард |
| Животное | Леопард | Крокодил | Олень | Лев | Волк |
| Вольера | |||||
Рис. 28.
Решение можно оформить в виде следующей таблицы (рис. 29)
| Лев | Олень | Волк | Крокодил | Леопард | Вольер |
| Леопард | Крокодил | Волк | Лев | ||
| Леопард | Крокодил | Олень | Волк | Лев | |
| Леопард | Крокодил | Лев | Олень | Волк | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Крокодил | Лев | Олень | Волк | Леопард | |
| Лев | Олень | Волк | Леопард | Крокодил | |
| Лев | Олень | Волк | Леопард | Крокодил | |
| Лев | Олень | Волк | Леопард | Крокодил | |
| Лев | Олень | Волк | Леопард | Крокодил | |
| Лев | Олень | Волк | Крокодил | Леопард |
Рис. 29.
Задача 12. Три рыцаря, каждый в сопровождении оруженосца, съехались на берегу реки и хотят переправиться на другой берег. Есть лодка, которая может вместить только двух человек. Могут ли переправиться рыцари и их оруженосцы на другой берег при условии, что, оказавшись отдельно от своего рыцаря, ни один оруженосец, не находился бы при этом в обществе других рыцарей?
Такую задачу могут решить учащиеся 6-го класса. Передвигаяя фигурки, можно проверять и пробовать множество вариантов, при этом необходимо записывать ход решения при помощи таблиц, либо при помощи графов.
Решение: этой задачи может быть таким: А, В, С – обозначим рыцарей; а, в, с – их оруженосцев.
А В С А В С . А В С А В С .
а в с . а в с а в . с а в с
А В С в с А В С А В С А В С
а . а в с . а в . с а в с .
. А В С А В С . А В С А В С
а в с а в с . а в с а в с
Ребятам постарше можно предложить следующую задачу. Отличается от предыдущей она только условием, решение же аналогично.
Задача 13. По обычаю одной восточной страны, жене запрещается оставаться без мужа в обществе мужчин, однажды трем супружеским парам понадобилось перебраться на южный берег реки с северного. Единственное подручное средство – лодка, вмещающая двух человек. В какой последовательности они должны были переправиться, чтобы соблюсти строгий обычай?
Такова же схема решения задач на переливание жидкости. Решая такие задачи, школьники учатся планировать свои действия, запоминать ход рассуждений. Эти задачи способствуют развитию настойчивости и сообразительности, развивают аналитическое мышление.
Задача 14. Три сосуда, вместимостью 8, 5, 3 л. стоят на полке. Первый сосуд наполнен водой, а два других пусты. Как с помощью этих сосудов отмерить один литр воды? Как отмерить 4 л. воды?
Решение. Сразу встает вопрос: с чего начать? Имеющиеся сосуды могут предложить два варианта: либо из восьмилитрового сосуда наполним пятилитровый, либо трехлитровый. Нужно учесть, что вода из этих трех сосудов никуда не выливается. Это сокращает число возможных ходов.
Первый способ.
I сосуд (8 л.) 8 3 3 6 6 (1) 1
II сосуд (5л.) 0 5 2 2 0 5 (4)
III сосуд (3л.) 0 0 3 0 2 2 3
Второй способ.
I сосуд (8 л.) 8 5 5 2 2 7 7 (4)
II сосуд (5л.) 0 0 3 3 5 0 1 1
III сосуд (3л.) 0 3 0 3 (1) 1 0 3
Задача 15. Али-Баба хочет попасть в пещеру с сокровищами. Перед пещерой стоит бочка, в крышке которой имеются четыре отверстия, образующие квадрат. Под отверстиями находится по кувшину, в каждом из которых торчит селедка, хвостом вверх или вниз. Али-Баба может просунуть руки в любые два отверстия и определить расположение находящихся под ними селедок, а также повернуть одну или две по своему усмотрению. Если хвосты всех селедок окажутся направленными в одну сторону, то дверь пещеры открывается. После того, как Али-Баба вытащит руки из отверстий, бочка быстро поворачивается и останавливается, причем Али-Баба не в состоянии определить новое соотношение бочки по отношению к старому. Существует ли способ действий, позволяющий Али-Бабе за несколько попыток наверняка открыть дверь?
Решение. Для решения необходимо рассмотреть все возможные действия Али-Бабы. Например, по схеме на рисунке 31. Таким образом самое большое после пяти «ходов» Али-Баба сможет попасть в пещеру с сокровищами. Если досконально рассматривать все возможности, то на третьем шаге Али-Баба может просунуть руки в отверстия, стоящие рядом, но это усложнит его дальнейшие действия.
Рассмотрим этот вариант (рис. 30):
Во втором случае – поменяв положение одной селедки, нельзя точно знать, какая из двух комбинаций а) или б) получилась. Следующий ход делается по диагонали. В случае а) нужно изменить положение двух селедок по диагонали и дверь откроется; в случае б) этот «ход» лишний, с его помощью можно определить положение селедок.
Дальше решение идет, как в общем случае, но Али-Баба сделает на один «ход» больше. Нужно сказать, что данная задача довольно сложная. Разбирая ее решение, нужно рассуждать последовательно и доказательно, отвечая на вопросы: «А почему именно так?», «А что будет если…?». На, а потом не трудно выбрать оптимальное решение, т.е самый кортокий путь к решению задачи (рис. 31).
1.3 Задачи на нахождение пересечения или объединение множеств (круги Эйлера)
Ещё один тип задач – задачи, в которых требуется найти некоторое пересечение множеств или их объеденение, соблюдая условия задачи.
Задача 16. В шахматном турнире учавствовало 7 человек . каждый с каждым сыграл по одной партии. Сколько партий они сыграли?
Решение. При решении этой задачи в счете возможны ошибки, т.е. некоторые партии считаются дважды. Предложите ребятам найти ответ с помощью графов, обозначая каждого ученика точкой, а игры – стрелками. Остается только подсчитать стрелки (рис. 32).
Рис. 32.
Можно оформить задачу в виде турнирной таблицы и подсчитать ее клеточки. Такие методы помогут ребятам объяснить числовое решение задачи:
Число партий =(7*6)/2=21
В дальнейшем школьники легко смогут решать такие задачи и без помощи грофов.
Задача 17. Каждые два из двадцати городов соединены линией воздушного беспересадочного сообщения. Сколько всего воздушных сообщений?
Ответ: 190
Задача 18. В учительской комнате в одну из перемен завязался разговор о журналах. В ходе его выяснилось, что каждый из учителей выписывает два журнала. На каждый из выписываемых журналов подписывается трое. Любая комбинация из двух таких журналов выписывается одним учителем сколько было учителей? Сколько было журналов выписано? Сколько номеров журналов они получили за год, если все журналы были ежемесячными?
Решение заключается в правильном построении графической схемы. Обозначим журналы точками. Каждому журналу соответствует три подписчика, т.е. из каждой точки выходят три ребра, каждое ребро соединяется еще с одной точкой (рис. 33). Каждая пара из полученных трех точек должна быть соединена отрезком. После проведения этих отрезков убеждаемся, что к графу нечего добавить.
Посмотрев на схему, можно сказать, что журналов было четыре, а учителей 6. число журналов в год легко посчитать: 6*2 *12 = 144. Или 4*3*12= 144.
При решении некоторых задач требуются более сложные построения. Пусть ребята придут к ним сами, пусть попробуют использовать уже знакомые им методы.
Еще один метод решения теоретико-множественных задач, с которыми следует познакомит ребят – это круги Эйлера.
Задача 19. В школе зимой работали 3 секции (лыжная, хоккейная, конькобежная). Всего в секциях занималось 38 учеников. В лыжной - 21 человек, среди которых трое еще занимались коньками, шестеро - еще в хоккейной секции, а один - сразу в трех секциях. В конькобежной секции было 13 человек, среди которых пятеро занимались сразу в двух секциях. Сколько человек заномалось в хоккейной секции?
хоккей коньки
Лыжи
Рис. 34.
Метод Эйлера (рис. 34) является незаменимым при решении некоторых задач, а также значительно упрощает рассуждения. Однако не всегда к задаче, с первого взгляда похожей на эту, нужно строить такую схему. Прежде, чем приступить к решению задачи, нужно проанализировать условия. Иногда с помощью арифметических действий решить такую задачу легче.
Задача 20. Одна швейцарская община насчитывает 50 членов. Родной язык всех 50 членов общины – немецкий, но 20 из них говорят еще по-итальянски, 35 из них владеют французским и еще 10 не знают ни итальянского, ни французского. Сколько членов общины говорят и по-французски, и по-итальянски?
Решение. 50 – 10 = 40 - владеют иностранным языком (кроме немецкого). 20 + 35 = 55 и 55 – 40 = 15 – членов общины говорят и по-французски, и по-итальянски (рис. 35).















