85688 (612549), страница 3
Текст из файла (страница 3)
Доказательство. Обозначим через проектирование X
Х/А. Так как А стягиваемо, то существует гомотопия ft: А
А, такая, что отображение f0: А
А тождественно и f
(A) есть точка. В силу теоремы Борсука, существует гомотопия Ft: Х
Х, такая, что F0 = id
и Ft│A =ft. B частности F
(A) =* (точка). Это означает, что можно рассматривать как отображение, заданное на Х/А, точнее, что F
= q
p, где q: Х/А
X - некоторое непрерывное отображение. По построению, F
~F0, т.е. q
p ~ id
.
Далее, Ft (А) А (при любом t), т.е. р
Ft (А) = *. Следовательно, р
Ft = = qt
р, где qt: Х/А
Х/А - некоторая гомотопия. При этом q
= id
иq
= р
q; следовательно, р
q ~ id
.
Следствие доказано.
Следствие 2. Если X - клеточное пространство и А - его клеточное подпространство, то Х/А ~ X СА, где СА - конус над А.
Доказательство. Х/А = (X СА) /СА ~Х
СА; последнее вытекает из предыдущего следствия, примененного к клеточному пространству X
СА и его стягиваемому клеточному подпространству СА.
Замечание. Оба доказанных предложения можно рассматривать не как следствия из теоремы Борсука, а как самостоятельные теоремы, только предположения о клеточности X и А нужно тогда заменить в первом случае предположением, что (X, А) - пара Борсука, а во втором случае - предположением, что (X СА, СА) - пара Борсука.
3.3 Теорема о клеточной аппроксимации
Теорема. Всякое непрерывное отображение одного клеточного пространства в другое гомотопно клеточному отображению.
Мы будем доказывать следующее, более сильное утверждение ("относительный вариант" нашей теоремы).
Теорема. Пусть f - непрерывное отображение клеточного пространства X в клеточное пространство Y, причем на клеточном подпространстве А пространства X отображение f клеточно. Тогда существует такое клеточное отображение g: X Y, что g│A =f│A и, более того, f~g relA.
Поясним запись f~g relA (читается: f гомотопно g относительно А), которой мы будем пользоваться и дальше. Она применяется в ситуации, когда непрерывные отображения f, g: X Y совпадают на подпространстве А пространства X и означает, что существует гомотопия h
: Х
Y, соединяющая f с g и неподвижная на А, т.е. такая, что ht (а) не зависит от t при а
А. Конечно, из f~ g relА следует, что f ~ g, но не наоборот. Пример: f,g: I
S
, f - "наворачивание" отрезка на окружность, g - отображение в точку; эти отображения гомотопны, но не гомотопны rel (0
1).
Доказательство теоремы. Предположим, что отображение f уже сделано клеточным не только на всех клетках из А, но и на всех клетках из X, имеющих размерность < р. Возьмем р-мерную клетку ер X - А. Ее образ f (ep) пересекается лишь с конечным числом клеток пространства Y (это следует из компактности f (
p)). Выберем среди этих клеток пространства Y клетку наибольшей размерности, скажем,
, dim
= q. Если q≤ р, то нам с клеткой ер делать нечего. В случае же q >р нам потребуется следующая лемма.
Лемма о свободной точке. Пусть U - открытое подмножество пространства Rp и : U
IntDq - такое непрерывное отображение, что множество V =
(dq)
U, где dq - некоторый замкнутый шарик в IntD
, компактно. Если q> р, то существует непрерывное отображение
: U
Int Dq, совпадающее с
вне
V и такое, что его образ не покрывает всего шара dq.
Доказательство этой леммы (и обсуждение ее геометрического значения) мы отложим до следующего пункта; ограничимся лишь важным замечанием, что отображение автоматически будет гомотопным
относительно U - V: достаточно взять связывающую
с
"прямолинейную" гомотопию, при которой точка
(u) равномерно движется к
(u) точке по прямолинейному отрезку, соединяющему
(u) с
(u).
Завершим доказательство теоремы. Из леммы о свободной точке вытекает, что сужение f│ гомотопно rel (A
X
) отображению f’: A
X
е р
Y, такому, что f’ (ep) задевает те же клетки, что и f (e р), но заведомо f’ (ep) не содержит всю клетку
. В самом деле, пусть h: Dp
Х, k: Dp
Y - характеристические отображения, соответствующие клеткам ер,
. Положим U=
h (f
(
)
ер) и определим отображение
: U
Int Dq как композицию:
u x
y
=
(u)
U e
f
(
)
Int Dq Обозначим через dq (замкнутый) концентрический подшар шара Dq. Множество V=
(dq) компактно (как замкнутое подмножество шара Dp). Пусть
: U
IntDq - отображение, доставляемое леммой о свободной точке. Отображение f' определим как совпадающее с f вне h (U) и как композицию
x u
y = f’ (x)
h (U) U Int Dq
Y
на h (U). Ясно, что отображение f’ непрерывно (оно совпадает с f на "буферном множестве" h (U - V)) и гомотопно f│ rel (A
X
), и даже rel (A
X
(e
-h (V)))) (это вытекает из гомотопности
~
rel (U - V)). Ясно также, что f' (ep) не покрывает eq.
Дальнейшее рассуждение совсем просто. Во-первых, неподвижную на A Х
гомотопию между f│
и f' мы можем распространить, по теореме Борсука, на все X, и это позволяет считать, что отображение f', обладающее всеми вышеперечисленными свойствами, определено на всем X. После этого мы берем точку у0
, не принадлежащую f’ (ер), и подвергаем f'│
"радиальной гомотопии": если точка x
ep не принадлежит f’
(
),To f' (x) стоит на месте, а если f' (x)
, то f’ (x) движется по отрезку, идущему из точки у0 на границу клетки
(точнее говоря, по k-образу прямолинейного отрезка, начинающегося в точке k
(у0) проходящего через точку k
(f’ (x))
k
(у0) и кончающегося на граничной сфере S
шара Dq). Эту гомотопию мы продолжаем до гомотопии отображения f'│
(неподвижной вне ер) и - по теореме Борсука - до гомотопии всего отображения f’: Х
Y. Получающееся отображение f’’ гомотопно f ге1 (A
Х
) и обладает тем свойством, что f’’ (ep) задевает q-мерных клеток на одну меньше, чем f (е р) (и, как и f (ep), не задевает клеток размерности >q). Применив эту процедуру нужное число раз, мы прогомотопируем отображение f к отображению, клеточному на A
Х
ep, причем гомотопия будет неподвижной на A
Х
.
Теперь заметим, что "исправление" отображения f, которое мы проделали для клетки ер, можно дословно так же проделать одновременно для всех р-мерных клеток из X - А. Тогда мы придем к отображению, клеточному на A Хр и гомотопному f rel (A
Х
).
Неподвижную на А гомотопию, связывающую отображение f с клеточным отображением, мы получим, если проделаем последовательно построенные гомотопии при р = 0, 1,2,... Правда, число этих гомотопии может быть бесконечно, но это не беда: р-ю гомотопию мы производим на отрезке 1 - 2 ≤t≤ 1 - 2
. Непрерывность всей гомотопии обеспечивается аксиомой (W): для каждой клетки е из X гомотопия будет неподвижной, начиная с некоторого te < 1. Теорема доказана.
3.4 Доказательство леммы о свободной точке
Для человека, не испорченного популярной математической литературой, сама формулировка леммы показалась бы нелепой: как же непрерывный образ пространства меньшей размерности может покрыть пространство большей размерности? Но кто же не знает, что это бывает: кривая Пеано, распропагандированная ничуть не меньше, чем, скажем, бутылка Клейна, осуществляет непрерывное (и даже взаимно однозначное) отображение отрезка на квадрат. Поэтому лемму приходится доказывать, и дело осложняется тем, что геометрическая интуиция помочь тут не может, она упорно твердит свое: такое вообще невозможно. С подобными трудностями сталкиваются всякий раз, когда "строгое" определение того или иного понятия (в данном случае -
-определение непрерывности) не вполне соответствует исходному интуитивному представлению: приходится вникать в устройство не реального объекта, а химеры. Но ничего не поделаешь - доказать лемму надо.
В основе второго доказательства леммы лежит понятие триангуляции. Напомним, что q-мерный евклидов симплекс есть подмножество пространства R , n ≤ q, являющееся выпуклой оболочкой q + 1 точек, не лежащих в одной (q - 1) - мерной плоскости. (Евклидовы симплексы размерностей 0, 1, 2, 3: точка, отрезок, треугольник, тетраэдр.) Эти q+ 1 точек называются вершинами симплекса. Подсимплексы, т.е. выпуклые оболочки различных подмножеств множества вершин, называются гранями нашего симплекса; это - симплексы размерности ≤q. Нульмерная грань - это вершина. Замечательное свойство симплекса заключается в том, что его линейное отображение в любое пространство Rm определяется своими значениями на вершинах, причем эти значения могут быть совершенно произвольны. Конечная триангуляция подмножества евклидова пространства - это такое его конечное покрытие евклидовыми симплексами, что любые два симплекса либо не пересекаются вовсе, либо пересекаются по целой грани. Удобно считать, что грани симплексов триангуляции также принадлежат к числу симплексов триангуляции.
Барицентрическое подразделение q-мерного симплекса состоит в том, что этот симплекс разбивается на (q + 1) ! более мелких q-мерных симплексов. Вершины новых симплексов - это центры тяжести граней старого симплекса (в том числе - его самого). Множество {х0, х ,..., xq) этих центров является множеством вершин некоторого симплекса барицентрического подразделения, если соответствующие грани
0,
,...,
q можно составить в цепочку последовательно вложенных друг в друга, см. рис.7. (По-другому барицентрическое подразделение q-мерного симплекса
можно описать так: сначала подвергаются барицентрическому подразделению все его (q - 1) - мерные грани, а потом над всеми построенными симплексами, лежащими на границе симплекса
, строятся конусы с вершиной в центре этого симплекса; начать это индуктивное определение можно с q = 0: с нульмерным симплексом при барицентрическом подразделении ничего не происходит. Еще по-другому: симплекс
- его совокупность точек вида
, где
- вершины, t
≥ 0 и
t
= 1; симплексы барицентрического подразделения отвечают перестановкам (i0, i
,..., iq) чисел 0, 1,..., q; симплекс, отвечающий этой перестановке, состоит из точек