85665 (612541)

Файл №612541 85665 (Итерационные методы решения систем линейных алгебраических уравнений)85665 (612541)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Введение

Данная курсовая работа включает в себя три итерационных метода решения систем линейных алгебраических уравнений (СЛАУ):

  1. Метод Якоби (метод итераций).

  2. Метод Холецкого.

  3. Метод верхней релаксации.

Также данная курсовая работа включает в себя: описание метода, применение метода к конкретной задаче (анализ), код программы решения вышеперечисленных методов на языке программирования Borland C++ Builder 6.

Описание метода

Метод решения задачи называют итерационным, если в результате получают бесконечную последовательность приближений к решению. Основное достоинство итерационных методов состоит в том, что точность искомого решения задается. Число итераций, которое необходимо выполнить для получения заданной точности , является основной оценкой качества метода. По этому числу проводится сравнение различных методов.

Главным недостатком этих методов является то, что вопрос сходимости итерационного процесса требует отдельного исследования. Примером обычных итерационных методов служат: метод итераций (метод Якоби), метод Зейделя, метод верхних релаксаций.

Начнем с метода итераций или как его ещё называют метода Якоби.

Существует сиcтема A·x = f (1), где матрица A = [aij] (i, j = 1, 2, …m) имеет обратную матрицу; x = (x1, x2, x3,… xm) – вектор неизвестных, f – вектор свободных членов. Систему (1) нужно преобразовать к следующему виду: (2) i=1, 2,…, m, где , , при этом aii 0.

Значение суммы считается равным 0, если верхний предел суммирования меньше нижнего. Тогда при i=1 уравнение имеет вид: (3). В методе Якоби исходят из записи системы в виде (2), итерации при этом определяют следующим образом: , (n=0, 1, …, n0, i=1, 2, …, m) (4).

Начальные значения – (i=0, 1, …, m) задаются произвольно (в программе мы это проделываем, вводя функцию по генерации случайных чисел – «random»). Окончание итерационного процесса определяют либо заданием максимального числа итераций n0, либо следующим условием: , где >0. В качестве нулевого приближения в системе (4) примем .

Если последовательность приближений x1(0), x2(0),…, xm(0), x1(1), x2(1),…, xm(1),…, x1(k), x2(k),…, xm(k) имеет предел , , то этот предел является решением системы (2).

Достаточным условием сходимости решения системы (1) является то, что матрица A является матрицей с преобладающими диагональными элементами, то есть , i=1, 2, …, m.

Теперь рассмотрим второй итерационный метод – метод Зейделя, который является модификацией метода Якоби. Основная его идея заключается в том, что при вычислении (k+1) – го приближения неизвестной xi учитываются уже вычисленные ранее (k+1) – е приближения (x1 x2,…, xi-1).

Пусть дана приведенная линейная система: (i = 1, 2, …n) (5). Выбираются произвольно начальные приближения корней x1(0), x2(0),…, xn(0), чтобы они в какой-то мере соответствовали неизвестным x1, x2, x3,…, xn.

Предполагается, что k-е приближение корней известно, тогда в соответствии с идеей метода строится (k+1) – е приближение по следующим формулам:


k=0,1,2,... (6)


Если выполняется достаточное условие сходимости для системы (5) – по строкам, то в методе Зейделя выгодно расположить уравнения (6) так, чтобы первое уравнение системы имело наименьшую сумму модулей коэффициентов: .

Теперь рассмотри 3 метод – метод верхних релаксаций.

Метод верхней релаксации – это есть метод Зейделя с заданным числовым параметром w.

Одним из наиболее распространенных одношаговых методов является метод верхних релаксаций, который имеет следующий вид (7), где w заданный числовой параметр (0

Достоинством итерационного метода верхних релаксаций является то, что при его реализации программным путем алгоритм вычислений имеет простой вид и позволяет использовать всего один массив для неизвестного вектора.

Для получения расчетных формул (7) перепишем в виде: или в компонентной записи получим (8) – это есть основная вычислительная формула.

В выражение (8) и входят одинаковым образом => при вычислениях они могут быть записаны в один и тот же массив. При реализации метода верхних релаксаций используется следующая форма записи алгоритма вычислений .

Действительно, при последовательном нахождении элемента (i+10 итерации) на каждом шаге будут использоваться найденные ранее значения, которые при k

Применение метода к конкретной задаче (анализ)

Составляя задачи на языке программирования Borland C++ Builder 6 для реализации точных методов решения СЛАУ я учитывал разное количество уравнений в системе (размерность матрицы задавал равным nxn). Но для проверки результатов использовал систему уравнений:

Вообще говоря, процесс Зейделя сходится быстрее, чем метод Якоби. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода Якоби достаточны и для сходимости метода Зейделя. Реализовав программы из полученного ответа я увидел, что процесс Зейделя сходится быстрее. Это видно по количеству итераций полученных в программе при приближенной точности =0,000001. Если для метода Якоби они составляют 16, то для метода Зейделя они составляют 9.

Также рассматривая метод верхней релаксации и сравнивая его с двумя другими методами видно, что в методе верхней релаксации количество итераций зависит от заданного числового параметра w. Задавая w=1, количество итераций равно 9, уменьшая значение параметра от 1 количество итераций начинает расти, в свою очередь увеличивая параметр количество итераций тоже начинает расти.

Приведем таблицу показывающих количество итераций (k) при разных значениях параметра w:

w

0.1

0.4

0.8

0.9

1

1.1

1.2

1.3

1.7

1.9

k

16

15

14

13

9

13

14

15

16

16

Из всего этого можно сделать вывод, что итерационные методы сходятся быстрее, чем точные методы, о чем свидетельствуют как быстрое уменьшение невязок, так и уменьшение изменений неизвестных.

Листинг программы

// –

#include <vcl.h>

#pragma hdrstop

#include «Unit1.h»

// –

#pragma package (smart_init)

#pragma resource «*.dfm»

#include

#include

TForm1 *Form1;

int n=0, prov=0, k=0;

const x=100;

float A[x] [x], B[x] [x];

float C[x], Y[x];

float *X;

bool fl1=false;

float e;

float v_sh;

// –

__fastcall TForm1:TForm1 (TComponent* Owner)

: TForm(Owner)

{

}

// –

void __fastcall TForm1: ButtonOkClick (TObject *Sender)

{

Memo1->Lines->Clear();

k=0;

TryStrToInt (Edit1->Text, n);

if (n>1)

{

StringGrid1->Enabled=true;

StringGrid1->RowCount=n;

StringGrid1->ColCount=n+1;

ButtonClear->Enabled=true;

ButtonOk->Enabled=false;

StringGrid1->Color=clWindow;

ButtonYakobi->Enabled=true;

ButtonZeydel->Enabled=true;

ButtonRelax->Enabled=true;

X=new float[n];

for (int i=0; i

{

for (int j=0; j

{

A[i] [j]=NULL;

}

X[i]=NULL;

}

}

else

{

ShowMessage («Число должно быть вещественного типа!»);

}

}

// –

void __fastcall TForm1: ButtonClearClick (TObject *Sender)

{

StringGrid1->Enabled=false;

StringGrid1->RowCount=0;

StringGrid1->ColCount=0;

ButtonClear->Enabled=false;

ButtonOk->Enabled=true;

StringGrid1->Color=clBtnFace;

ButtonYakobi->Enabled=false;

}

// –

void __fastcall TForm1: ButtonYakobiClick (TObject *Sender)

{

//TryStrToFloat (Edit2->Text, e);

Memo1->Lines->Clear();

e=StrToFloat (Edit2->Text);

for (int i=0; i

{

for (int j=0; j

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i

{

for (int j=0; j

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

for (int i=0; i

{

for (int j=0; j

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

for (int i=0; i

float s=0;

k=0;

do

{

prov=0;

for (int i=0; i

{

Y[i]=X[i];

for (int j=0; j

{

s+=B[i] [j]*X[i];

}

X[i]=s+C[i];

s=0;

}

for (int i=0; i

{

if (fabs(X[i] – Y[i])

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОД ЯКОБИ »);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i

{

p=»»;

for (int j=0; j

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Корни СЛАУ равны:»);

for (int i=0; i

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Нет корней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количество итераций = «+FloatToStr(k));

}

}

// –

void __fastcall TForm1: ButtonExitClick (TObject *Sender)

{

Close();

}

// –

void __fastcall TForm1: RadioButton2Click (TObject *Sender)

{

ButtonYakobi->Visible=false;

ButtonZeydel->Visible=true;

ButtonRelax->Visible=false;

}

// –

void __fastcall TForm1: RadioButton1Click (TObject *Sender)

{

ButtonYakobi->Visible=true;

ButtonZeydel->Visible=false;

ButtonRelax->Visible=false;

}

// –

void __fastcall TForm1: ButtonZeydelClick (TObject *Sender)

{

Memo1->Lines->Clear();

k=0;

e=StrToFloat (Edit2->Text);

for (int i=0; i

{

for (int j=0; j

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i

{

for (int j=0; j

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

for (int i=0; i

{

for (int j=0; j

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

for (int i=0; i

{

X[i]=rand();

}

k=0;

float s=0;

for (int i=0; i

{

for (int j=0; j

{

s+=B[i] [j];

}

Y[i]=s;

s=0;

}

s=Y[0];

for (int i=1; i

{

if (s

Y[i]=0;

}

if (s<1)

{

do

{

s=0;

for (int i=0; i

{

Y[i]=X[i];

}

for (int i=0; i

{

s=C[i];

for (int j=0; j

{

s+=X[j]*B[i] [j];

}

X[i]=s;

}

prov=0;

for (int i=0; i

{

if (fabs(X[i] – Y[i])

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОД ЗЕЙДЕЛЯ »);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i

{

p=»»;

for (int j=0; j

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Корни СЛАУ равны:»);

for (int i=0; i

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Нет корней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количество итераций = «+FloatToStr(k));

}

else {Memo1->Lines->Add («СЛАУ является не сходимой!»);}

}

}

// –

void __fastcall TForm1: RadioButton3Click (TObject *Sender)

{

ButtonYakobi->Visible=false;

ButtonZeydel->Visible=false;

ButtonRelax->Visible=true;

}

// –

void __fastcall TForm1: ButtonRelaxClick (TObject *Sender)

{

//TryStrToFloat (Edit2->Text, e);

v_sh=StrToFloat (Edit3->Text);

e=StrToFloat (Edit2->Text);

Memo1->Lines->Clear();

k=0;

for (int i=0; i

{

for (int j=0; j

{

TryStrToFloat (StringGrid1->Cells[j] [i], A[i] [j]);

}

}

for (int i=0; i

{

for (int j=0; j

{

if (A[i] [j]==NULL)

{

ShowMessage («Ошибка! Есть пустые ячейки!»);

fl1=true;

i=n;

break;

}

}

}

if(! fl1) {

float vsp=0, alp=0;

for (int i=0; i

{

for (int j=0; j

{

if (i!=j) B[i] [j]=(-1)*A[i] [j]/A[i] [i];

else

{

B[i] [j]=0;

C[i]=A[i] [n]/A[i] [i];

}

}

}

float *sq_z=new float[n];

float *sq_y=new float[n];

for (int i=0; i

{

sq_z[i]=rand();

}

for (int i=0; i

for (int i=0; i

vsp=C[0];

for (int j=0; j

{

vsp+=sq_z[j]*B[0] [j];

}

sq_z[0]=vsp;

for (int i=0; i

{

for (int j=0; j

{

vsp+=B[i] [j];

}

Y[i]=vsp;

vsp=0;

}

vsp=Y[0];

for (int i=1; i

{

if (vsp

Y[i]=0;

}

if (vsp<1)

{

do

{

for (int i=0; i

{

Y[i]=X[i];

}

for (int i=0; i

{

vsp=C[i];

for (int j=0; j

{

vsp+=sq_z[j]*B[i] [j];

alp+=B[i] [j]*sq_y[i];

}

sq_z[i]=vsp;

sq_y[i]=alp+C[i];

vsp=0;

alp=0;

X[i]=v_sh*sq_z[i]+(1-v_sh)*sq_y[i];

}

prov=0;

for (int i=0; i

{

if (fabs(X[i] – Y[i])

}

k++;

}

while (prov!=n);

Memo1->Lines->Add (» МЕТОД ВЕРХНЕЙ РЕЛАКСАЦИИ »);

Memo1->Lines->Add(«»);

String p=»»;

Memo1->Lines->Add («Промежуточная матрица:»);

for (int i=0; i

{

p=»»;

for (int j=0; j

{

p+=FloatToStr (B[i] [j])+»»;

}

Memo1->Lines->Add(p);

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Корни СЛАУ равны:»);

for (int i=0; i

{

if (X[i]!=NULL)

{

Memo1->Lines->Add («x»+IntToStr (i+1)+» = «+FloatToStr (X[i]));

}

else

{

Memo1->Lines->Add («Нет корней!»);

break;

}

}

Memo1->Lines->Add(«»);

Memo1->Lines->Add («Количество итераций = «+FloatToStr(k));

}

else {Memo1->Lines->Add («СЛАУ является не сходимой!»);}

}

}

// –

Результаты расчета

МЕТОД ЯКОБИ

МЕТОД ЗЕЙДЕЛЯ

МЕТОД ВЕРХНЕЙ РЕЛАКСАЦИИ

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1

x2 = 1

x3 = 1,00000011920929

Количество итераций = 16

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1

x2 = 0,99999988079071

x3 = 0,999999940395355

Количество итераций = 9

Промежуточная матрица:

0 -0,100000001490 -0,100000001490 0

-0,200000002980 0 -0,100000001490 0

-0,200000002980 -0,200000002980 0 0

Корни СЛАУ равны:

x1 = 1,00000011920929

x2 = 0,99999988079071

x3 = 0,999999940395355

w=1

Количество итераций = 9

Характеристики

Тип файла
Документ
Размер
641,12 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее