85635 (612534), страница 3

Файл №612534 85635 (Инвариантные подгруппы бипримарных групп) 3 страница85635 (612534) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

1) , , - любое натуральное число за исключением , , , , , , , , , , , , , , , ;

2) , , - любое натуральное число ;

3) , , - любое натуральное число за исключением , где ; , где - любое целое число, удовлетворяющее неравенству . Для дополнительно исключаются числа , , и ; для дополнительно исключаются и .

Доказательство теоремы основывается на формуле для вычисления порядка силовской -подгруппы общей линейной группы , полученной в 7.

Пусть и - различные простые числа, - показатель числа по модулю и , не делит . Через обозначим порядок силовской -подгруппы группы , а через - показатель, с которым входит в произведение . В 7 доказана следующая

Лемма 14 Если , то . Если , то и число определяется так: пусть - наименьшее целое, при котором и ; если , то ; если , то , - нечетное число.

Напомним, что - целая часть числа , т.е. наибольшее целое число, не превосходящее (см. 9).

Лемма 15 Если - натуральное число, то

Доказательство. Пусть - наибольшее целое число, при котором . Так как , то

С другой стороны,

и .

Лемма 16 Если - натуральное число , то .

Доказательство проводим индукцией по . Если , то

Пусть утверждение верно для . Докажем его для .

Если кратно , то

. Но - целое число, а -

дробное. Поэтому

Если кратно , то .

Пусть, наконец, оба числа и не кратны , тогда , причем не целое число. Так как число целое, то , откуда . Лемма доказана.

Лемма 17 Если - натуральное число, а - наибольшее целое число, при котором , то .

Доказательство. По лемме 15, , поэтому . Неравенство докажем индукцией по . Для и справедливость неравенства проверяется непосредственно.

Пусть и пусть это неравенство верно для всех . Докажем его для . Разность обозначим через . Так как , то . Поэтому если - наибольшее целое число, при котором, , то и по индукции имеем

Вычислим . Так как

то

Лемма доказана.

Замечание. Границы, указанные в лемме 17, точные. Левая граница достигается при , правая - при .

Лемма 18 Если натуральное число , то и .

Доказательство обоих неравенств легко получить индукцией по .

Доказательство теоремы 3. Сохраним все обозначения леммы 14. Рассмотрим вначале случай, когда . По лемме (5), в этом случае , где . Допустим, что . Так как , то и . Поэтому , и, применяя лемму 15, получаем , что противоречит условию теоремы.

Значит, , поэтому либо , либо .

Пусть . Тогда , а так как , то и .

Пусть . Тогда . Если четное, то , т.е.4 делит . Противоречие. Значит, нечетное. Поэтому , и так как число нечетное, то . Таким образом, если , то .

Итак, если , то либо и , либо и .

Пусть . Тогда из леммы 14 следует, что

Предположим, что . Тогда (см. лемму 15), а так как при справедливо неравенство , то . Учитывая, что или , получаем .

Если , то и . Кроме того, , поэтому

и .

Таким образом, при выполняется неравенство . Так как , то . Противоречие с условием теоремы.

Следовательно, или и или .

Итак, нам необходимо рассмотреть следующие случаи: , ; , ; , .

Случай 1. Пусть , . В этом случае

Если , то, вычисляя для каждого значения с помощью натуральных логарифмов, убеждаемся; что в точности для следующих , , , , , , , , -- , -- .

Пусть и - наибольшее натуральное число, при котором . Ясно, что . С помощью индукции легко проверяется неравенство; . Используя лемму 17, мы получаем:

Теперь

Таким образом, .

Случай 2. Пусть , . В этом случае , где , если четное, и если нечетное, а . Если или 3, а , то непосредственно убеждаемся, что . Если , то , а и т.е. . Используя лемму 18, получаем

т.е.

Теперь пусть . Из леммы 16 имеем или . Поэтому . Осталось рассмотреть случай, когда . Тогда , поэтому, используя леммы 16 и 18, получаем:

Таким образом, при любом имеет место неравенство .

Случай 3. Пусть , . В этом случае , где - целая часть числа . Если , то и . Отсюда следует, что . Противоречие. Значит, и . Мы можем записать , .

Рассмотрим вначале случай, когда , т.е. когда .

Тогда , .

Если , то , где - основание натуральных логарифмов и

, т.е. .

Если , то и , т.е. . Найдем значения для и . Для имеем:

Для имеем:

Если , то , и при получаем

, т.е. .

Если , то . Определим для и значения , при которых . Для имеем , т.е. , а . Для имеем , т.е. , а .

Теперь рассмотрим случай, когда , т.е. когда .

Если , то и . Непосредственно убеждаемся, что лишь при или имеет место неравенство .

Если , то и . Непосредственно убеждаемся, что лишь только при и имеет место неравенство .

Пусть . Так как , a , то

,

так как .

Таким образом, .

Пусть теперь . Тогда . Пусть вначале . Тогда , и по лемме 3 имеем . Поэтому

Здесь мы воспользовались неравенством , которое вытекает из неравенства . Таким образом, доказано, что .

Остался случай . Так как , то

и, применяя лемму 15, получаем

Таким образом, .

Теорема доказана.


Заключение

Итак, в данной курсовой работе исследовано существование примарных нормальных подгрупп в бипримарных группах. Также изучены и доказаны следующие основные теоремы:

Теорема. Пусть - конечная разрешимая группа, порядка , - простое число и не делит . Если , то либо обладает характеристической -подгруппой порядка , либо справедливо одно из следующих утверждений:

1) , и делит порядок ;

2) , делит порядок , где - простое число, причем , если , и , если ;

3) , 1 и делит порядок .

Теорема. Пусть - группа порядка , и - простые числа. Если , то либо обладает характеристической -подгруппой порядка , либо справедливо одно из следующих утверждений:

1) , , и ;

2) , , , причем , если , и , если ;

3) , , и .

Теорема. Группа порядка , , не имеющая неединичных инвариантных -подгрупп, существует для каждого из следующих трех случаев:

1) , , и ;

2) , , и , если , , если ;

3) , , и .

Теорема. Пусть и - различные простые числа и - порядок силовской -подгруппы из группы . Тогда и только , когда выполняется одно из условий:

1) , , - любое натуральное число за исключением , , , , , , , , , , , , , , , ;

2) , , - любое натуральное число ;

3) , , - любое натуральное число за исключением , где ; , где - любое целое число, удовлетворяющее неравенству . Для дополнительно исключаются числа , , и ; для дополнительно исключаются и .


Список литературы

11[] Burnside W., On groups of order , Proc. London Math. Soc.2, № 1 (1904), 388--392.

22[] Вurnside W., On groups of order (Second paper), Proc. London Math. Soc., 2, № 2 (1905), 432--437.

33[] Вurnside W., Theory of groups of finite order, Cambridge, 1911.

44[] Виноградов И.М., Основы теории чисел, М., Наука, 1965.

55[] Huppert В., Endliche Gruppen. I, Berlin, Springer, 1967.

66[] Шеметков Л.А., К теореме Д.К. Фаддеева о конечных разрешимых группах, Матем. заметки, 5, № 6 (1969), 665--668.

77[] Монахов В.С., Инвариантные подгруппы бипримарных групп. Матем. заметки, 18, № 6 (1975) б 877-886.

88[] Burnside W., On groups of order (second paper), Proc. London Math. Soc., 2, N 2 (1905), 432--437.

99[] Виноградов И.М., Основы теории чисел, М., 1965.

Характеристики

Тип файла
Документ
Размер
13,73 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6896
Авторов
на СтудИзбе
268
Средний доход
с одного платного файла
Обучение Подробнее