85603 (612521), страница 2
Текст из файла (страница 2)
В математике опубликовал ряд исследований по теории вероятностей, теории рядов и дифференциальным уравнениям. Он первый применил математический анализ к задачам теории вероятностей (1768), до этого использовались только комбинаторный подход. Бернулли продвинул также математическую статистику, рассмотрев с применением вероятностных методов ряд практически важных задач.
Даниил являлся Академиком и почетным иностранным членом Петербургской академии наук(1733), членом Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Лауреат многочисленных премий и призов в конкурсах.
Якоб II Бернулли
Якоб получил юридическое образование, но затем переключился на физику и математику. После неудачной попытки занять кафедру физики в Базеле, освободившуюся после смерти Даниила Бернулли (1782), Якоб уехал в Италию и поступил на дипломатическую службу. В 1786 году он переселился в Россию. Женился на внучке Эйлера. Служил в Академии наук и Кадетском корпусе. Погиб в возрасте 30 лет в результате несчастного случая при купании в Неве.
Якоб Бернулли успел опубликовать незаурядные работы по различным вопросам механики, теории упругости, гидростатики и баллистики: вращательному движению тела, укрепленного на растяжимой нити, течению воды в трубах, гидравлическим машинам. Вывел дифференциальное уравнение колебания пластин.
Математические объекты, названные в честь членов семьи
Дифференциальное уравнение вида:
с, n≠1, 0.
называется дифференциальным уравнением Бернулли (в честь Якоба).
Метод решения:
1. Делим левую и правую части на yn
2. Выполняем замену
3. Решаем дифференциальное уравнение
Оно может быть решено с использованием интегрирующего множителя
Пример:
Делим на y2
Замена переменных
Умножаем на M(x),
Результат
Закон Бернулли
Закон Бернулли (в честь Даниила Бернулли) является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:
Здесь
ρ – плотность жидкости,
v – скорость потока,
h – высота, на которой находится рассматриваемый элемент жидкости,
p – давление.
Константа в правой части обычно называется напором, или полным давлением, а также интегралом Бернулли. Размерность всех слагаемых – единица энергии, приходящейся на единицу объёма жидкости. Для горизонтальной трубы h = 0 и уравнение Бернулли принимает вид:
Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности ρ:
Согласно закону Бернулли полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.
Полное давление состоит из весового (ρgh), статического (p) и динамического (
) давлений.
Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров, водо- и пароструйных насосов.
Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела всегда в точности равна нулю.
Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда.
Согласно закону Бернулли приравняем полные давления на верхней поверхности жидкости и на выходе из отверстия:
где
p0 – атмосферное давление,
h – высота столба жидкости в сосуде,
v – скорость истечения жидкости.
Отсюда:
. Это – формула Торричелли. Она показывает, что при истечении идеальной несжимаемой жидкости из отверстия в широком сосуде жидкость приобретает скорость, какую получило бы тело, свободно падающее с высоты h.
Для сжимаемого идеального газа
(постоянна вдоль линии тока или линии вихря)
где
– адиабатическая постоянная газа
p – давление газа в точке
ρ – плотность газа в точке
v – скорость течения газа
g – ускорение свободного падения
h – высота относительно начала координат
При движении в неоднородном поле gz заменяется на потенциал гравитационного поля.
Термодинамика закона Бернулли
Выведем закона Бернулли из уравнения Эйлера и термодинамических соотношений.
1. Запишем Уравнение Эйлера:
φ – потенциал. Для силы тяжести φ=gz
2. Запишем выражение для энтальпии и предположим, что энтропия системы постоянна (или, можно сказать, что течение адиабатично):
dW = VdP + TdS
Пусть S = const и w – энтальпия единицы массы, тогда:
или
3. Воспользуемся следующими соотношениями из векторной алгебры:
– проекция градиента на некоторое направление равно производной по этому направлению.
4. Уравнение Эйлера с использованием соотношений выведенных выше:
Спроецируем это уравнение на единичный вектор касательный к линии тока, учитывая следующее:
– условие стационарности
– так как
Получаем:
То есть на линиях тока в стационарной адиабатической жидкости выполняется следующее соотношение:
Лемниската Бернулли
Лемниската по форме напоминает восьмёрку. Её название восходит к античному Риму, где «лемнискатой» называли бантик, с помощью которого прикрепляли венок к голове победителя на спортивных играх. Эту лемнискату называют в честь швейцарского математика Якоба Бернулли, положившего начало её изучению.
Уравнения
Рассмотрим простейший случай: если расстояние между фокусами 2c, расположены они на оси OX, и начало координат делит отрезок между ними пополам, то следующие уравнения задают лемнискату:
-
в прямоугольных координатах:
-
в полярных координатах
Параметрическое уравнение в прямоугольной системе:
,
Чтобы задать лемнискату по двум произвольным точкам, можно не выводить уравнение заново, а определить преобразование координат, при котором старый (данный) фокусный отрезок переходит в новый, и воздействовать на представленные уравнения этим преобразованием.
Свойства.
-
Лемниската – кривая четвёртого порядка.
-
Она имеет две оси симметрии: прямая, на которой лежит F1F2, и серединный перпендикуляр этого отрезка, в простейшем (данном) случае – ось OY.
-
Точка, где лемниската пересекает саму себя, называется узловой или двойной точкой.
-
Кривая имеет 2 максимума и 2 минимума. Их координаты:
-
Расстояние от максимума до минимума, находящихся по одну сторону от серединного перпендикуляра (оси OY в данном случае) равно расстоянию от максимума (или от минимума) до двойной точки.
-
Касательные в двойной точке составляют с отрезком F1F2 углы
. -
Лемнискату описывает окружность радиуса
, поэтому иногда в уравнениях производят эту замену. -
Инверсия относительно окружности с центром в двойной точке, переводит лемнискату Бернулли в равнобочную гиперболу.
-
Для представления в полярных координатах, верно следующее
-
Площадь полярного сектора
, при
:
-
В частности, площадь каждой петли
. -
Радиус кривизны лемнискаты есть
-
Построение лемнискаты
-
с помощью трёх отрезков
Это один из наиболее простых и быстрых способов, однако требует наличия дополнительных приспособлений.
На плоскости выбираются две точки – A и B – будущие фокусы лемнискаты. Собирается специальная конструкция из трёх скреплённых в ряд на шарнирах отрезков, чтобы полученная линия могла свободно изгибаться в двух местах (точки сгиба – C и D). При этом необходимо соблюсти пропорции отрезков: AC=BD=
, CD=AB. Края линии крепятся к фокусам. При непараллельном вращении отрезков вокруг фокусов середина центрального отрезка опишет лемнискату Бернулли.
-
при помощи секущих (способ Маклорена)
Строится окружность радиуса
с центром в одном из фокусов. Из середины O фокусного отрезка строится произвольная секущая OPS (P и S – точки пересечения с окружностью), и на ней в обе стороны откладываются отрезки OM1 и OM2, равные хорде PS. Точки M1, M2 лежат на разных петлях лемнискаты.
Неравенство Бернулли
Неравенство Бернулли (названо в честь Иоганна) утверждает: если
, то
Доказательство проводится методом математической индукции по n. При n = 0 неравенство, очевидно, верно. Допустим, что оно верно для n, докажем его верность для n+1:
, ч.т.д.
Примечания:
-
Неравенство справедливо также для вещественных
(при
) -
Неравенство также справедливо для
(при
), но указанное выше доказательство по индукции в случае
не работает.
Распределение Бернулли
Распределение Бернулли (названо в честь Якоба) моделирует случайный эксперимент произвольной природы, когда заранее известна вероятность успеха или неудачи.
(постоянна вдоль линии тока или линии вихря)
.
, поэтому иногда в уравнениях производят эту замену.
, при
:
.
(при
(при
), но указанное выше доказательство по индукции в случае
не работает.













