85104 (612465), страница 3
Текст из файла (страница 3)
, частные уравнения имеют два различных действительных корня (см. [1],[7]).
Пример. Решить уравнение
2а∙(а-2)∙х = а-2. (2)
Решение. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются, а=0 и а=2. При этих значениях параметра а, невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0 и а≠2 деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества
A1={0}, А2={2} и А3= {а≠0, а≠2}
и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а=0; 2) а=2; 3) а≠0, а≠2.
Рассмотрим эти случаи.
1) При а=0 уравнение (2) принимает вид 0∙х=2. Это уравнение не имеет корней.
2) При а=2 уравнение (2) принимает вид 0∙х=0. Корнем этого уравнения является любое действительное число.
3) При а≠0, а≠2 уравнение соответствует третьему типу откуда х =
=
.
0твет: 1) если а=0, то корней нет;
2) если а=2, то х — любое действительное число;
3) если а≠0, а≠2 , то х =
.
Пример. Решить уравнение
(а — 1)∙ х2+2∙ (2а+1)∙ х + (4а+3) =0. (3)
Решение. В данном случае контрольным значением параметра a является единица. Дело в том, что при a=1 уравнение (3) является линейным, а при а≠1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) a=1; 2) а≠1.
Рассмотрим эти случаи.
1) При a=1 уравнение (3) примет вид 6х+7=0. Из этого уравнения находим х = –
.
2) Из множества значений параметра а≠1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.
Дело в том, что если дискриминант D=0 при а=ао, то при переходе значения D через точку ао дискриминант может изменить знак (например, при а<ао D ао D > 0). Вместе с этим при переходе через точку ао меняется и число действительных корней квадратного уравнения (в нашем примере при а<ао корней нет, так как D ао D > 0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.
Составим дискриминант уравнения (3):
=(2а+ l)2 — (а — 1) (4а+3). После упрощений получаем
= 5а+4.
Из уравнения
=0 находим
— второе контрольное значение параметра а. При этом если
, то D < 0; если
, то D ≥ 0; и
.
Таким образом, осталось решить уравнение (3) в случае, когда
и в случае, когда
и
.
Если
, то уравнение (3) не имеет действительных корней;
если же
и
, то находим
;
если
, то
и тогда
.
Ответ: 1) если
, то корней нет;
2) если а = 1, то х =
;
3) если
, то
;
4) если
, то
.
Дробно-рациональные уравнения, содержащие параметр, сводящиеся к линейным
Процесс решения дробно-рациональных уравнений протекает по обычной схеме: данное уравнение заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего учащиеся решают известным им способом целое уравнение, исключая посторонние корни, то есть числа, которые обращают общий знаменатель в нуль. В случае уравнений с параметрами эта задача более сложная. Здесь, чтобы посторонние корни исключить, требуется находить значение параметра, обращающее общий знаменатель в нуль, то есть решать соответствующие уравнения относительно параметра (см. [1]).
Пример. Решить уравнение
. (4)
Решение. Значение а=0 является контрольным. При a=0 уравнение (4) теряет смысл и, следовательно, не имеет корней. Если а≠0, то после преобразований уравнение (4) примет вид:
х2+2 (1 — а) х +а2 — 2а — 3=0. (5)
Найдем дискриминант уравнения (5)
= (1 — a)2 — (a2 — 2а — 3) = 4. Находим корни уравнения (5): х1 =а + 1, х2 = а — 3. При переходе от уравнения (4) к уравнению (5) расширилась область определения уравнения (4), что могло привести к появлению посторонних корней. Поэтому необходима проверка.
Проверка. Исключим из найденных значений х такие, при которых х1+1=0, х1+2=0, х2+1=0, х2+2=0.
Если х1+1=0, т. е. (а+1)+1=0, то а = - 2.
Таким образом, при а = - 2 х1-посторонний корень уравнения (4).
Если х1+2=0, т. е. (а+1)+2=0, то а = - 3.
Таким образом, при а = - 3 x1- посторонний корень уравнения (4).
Если х2+1 =0, т. е. (а-3)+1=0, то а=2.
Таким образом, при а=2 х2 - посторонний корень уравнения (4)'.
Если х2+2=0, т. е. (а - 3)+2=0, то а=1.
Таким образом, при а = 1 х2- посторонний корень уравнения (4).
При а = - 3 получаем х= - 6; при a = - 2 х = - 5;
При a=1 х = 1+1=2; при a=2 х=2+1=3. Итак, можно записать
Ответ: 1) если a = - 3, то х = - 6;
2) если a = -2, то х = - 5;
3) если a=0, то корней нет;
4) если a = 1, то х=2;
5) если а=2, то х=3;
6) если
, то х1 = а + 1, х2 = а – 3.
Иррациональные уравнения, содержащие параметр
Главными особенностями при решении уравнений такого типа являются:
ограничение области определения неизвестной х, так как она меняется в зависимости от значения параметра.
в решении уравнений вида
при возведении в квадрат необходимо учитывать знак
и проводить проверку корней.
При рассмотрении всех особых случаев и возведении обеих частей иррационального уравнения в квадрат мы переходим к решению квадратного уравнения с параметром.
Рассмотрим несколько примеров и попробуем заметить эти особенности при решении (см. [1]).
Пример. Решить уравнение х -
= 1. (6)
Решение: метод решения: возведем в квадрат обе части иррационального уравнения с последующей проверкой полученных решений.
Перепишем исходное уравнение в виде:
(7)
При возведении в квадрат обеих частей исходного уравнения и проведения тождественных преобразований получим:
2х2 – 2х + (1 - а) = 0, D = 2а – 1.
Особое значение: а = 0,5. Отсюда:
при а > 0,5 х1,2 = 0,5∙(1 ±
);
при а = 0,5 х = 0,5;
при а <0,5 уравнение не имеет решений.
Проверка:
при подстановке х = 0,5 в уравнение (7), равносильное исходному, получим неверное равенство. Значит, х = 0,5 не является решением (7) и уравнения (6).
при подстановке х2 = 0,5 ( 1 -
) в (7) получим:
-0,5 ( 1 +
) =
Так как левая часть равенства отрицательна, то х2 не удовлетворяет исходному уравнению.
Подставим х1 = 0,5 ( 1 +
) в уравнение (7):
.
Проведя равносильные преобразования, получим:
Если
, то можно возвести полученное равенство в квадрат:
.
Имеем истинное равенство при условии, что
.
Это условие выполняется, если а≥1. Так как равенство истинно при а≥1, а х1 может быть корнем уравнения (6) при а > 0,5, следовательно, х1– корень уравнения при а≥1.
Ответ.
при а ≥ 1 х = 0,5∙(1 +
);
при а <1 уравнение не имеет решений.
Показательные уравнения, содержащие параметр
Большинство показательных уравнений с параметрами сводится к показательным уравнениям вида: а f (x) = b φ(х) (*), где а>0, b>0.
Область допустимых значений такого уравнения находится как пересечение областей допустимых значений функций f(x) и φ (х). Для решения уравнения (*) необходимо рассмотреть следующие случаи:
При а=b=1 решением уравнения (*) является область его допустимых значений D.
При а=1, b≠1 решением уравнения (*) служит решение уравнения φ(х)=0 на области допустимых значений D.
При а≠1, b=1 решение уравнения (*) находится как решение уравнения f(х) = 0 на области D.
При а=b (а>0, а≠1, b>0, b≠1) уравнение (*) равносильно уравнению f(х) = φ(х) на области D.
При а≠b (а>0, а≠1, b>0, b≠1) уравнение (*) тождественно уравнению
(c>0, c≠1) на области D (см. [1]).
Пример. Решить уравнение: а х + 1 = b 3 – х
Решение. ОДЗ уравнения: х
R, а > 0, b >0.
1) При а ≤ 0, b ≤ 0 уравнение не имеет смысла;
2) При а = b = 1, х
R;
3) При а = 1, b ≠ 1 имеем: b 3 – х = 1 или 3 – х = 0
х = 3;
4) При а ≠ 1, b = 1 получим: а х + 1 = 1 или х + 1 = 0
х = -1;
5) При а = b (а > 0, а ≠ 1, b >0, b ≠ 1) имеем: х + 1 =3 – х
х = 1;
6) При
,
получим: уравнение
, которое не имеет решения;
7) При а ≠ b и
(а > 0, а ≠ 1, b >0, b ≠ 1) прологарифмируем исходное уравнение по основанию а, получим:
, х + 1 = (3 – х) log a b ,
.
Ответ: при а ≤ 0, b ≤ 0 или
,
уравнение не имеет решений;
при а = b = 1, х
R;
при а = 1, b ≠ 1 х = 3;
при а ≠ 1, b = 1 х = -1;
при а = b (а > 0, а ≠ 1, b >0, b ≠ 1) х = 1;
при а ≠ b (а > 0, а ≠ 1, b >0, b ≠ 1)
.
Логарифмические уравнения, содержащие параметр
Решение логарифмических уравнений с параметрами сводится к нахождению корней элементарного логарифмического уравнения. Важным моментом решения уравнений такого типа является проверка принадлежности найденных корней ОДЗ исходного уравнения (см. [1]).
Пример. Решить уравнение
2 – log
(1 + х) = 3 log а
- log
(х 2 – 1)2.
Решение. ОДЗ: х > 1, а > 0, а ≠ 1.
Осуществим на ОДЗ цепочку равносильных преобразований исходного уравнения:
log а а2 + log a(х2 - 1) = log а (
) 3 + log a
,
log а (а2 (х2 - 1)) = log а ((
) 3
),
а2 (х2 - 1) = (х - 1)
,
а2 (х - 1) (х + 1) = (х - 1)
.
Так как х ≠ -1 и х ≠ 1, сократим обе части уравнения на (х - 1) и на
. Тогда получим
=















