7068-1 (612441), страница 3

Файл №612441 7068-1 (Симметpия относительно окpужности) 3 страница7068-1 (612441) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

|R-d|·|R+d| = 2Rr2


R2-d2 .

Учитывая, что |X¢Y¢| = 2R¢, где R¢ - радиус окружности invOr(w1), получаем формулу

R¢ = Rr2


R2-d2 .

Возвращаясь к образу описанной окружности при инверсии относительно w(O,r), имеем

r


2 = Rr2


R2-d2 ÞR2-d2 = 2RrÞd2 = R2-2Rr.

Закончим этот параграф одним совершенно неожиданным результатом. Сначала напомним некоторые определения и факты. Окружностью Эйлера треугольника ABC называется окружность, проходящая через середины его сторон. На этой окружности также лежат основания высот DABC и середины трех отрезков, соединяющих ортоцентр этого треугольника (т.е. точку пересечения его высот или их продолжений7) с вершинами. Поскольку на окружности Эйлера лежат девять точек, естественно связанных с треугольником ABC, ее называют еще окружностью девяти точек. Вневписанной окружностью треугольника ABC называется окружность, касающаяся стороны этого треугольника и продолжений двух других его сторон. В следующей лемме перечисляются некоторые свойства вневписанной окружности.

Лемма 1. Пусть |AB| = c, |AC| = b, |BC| = a, p - полупериметр DABC, O1 и Oa - центры вписанной (w1) и вневписанной (wa) окружностей (рис. 13), r1 и ra - их радиусы, X и Xa - точки касания этих окружностей со стороной [BC], K и L - с прямой (AC), M и N - с прямой (AB). Пусть также (B1C1) - общая внутренняя касательная к w1 и wa, отличная от (BC). Тогда

|AL| = p;

|AK| = p-a, |CK| = p-c, |BX| = p-b;

|BX| = |CXa|;

|BC1| = |B1C| = |b-c|;

pr1 = ra(p-a);

r1ra = (p-b)(p-c).

Рис. 13

Доказательство. 1) Следует из 2|AL| = |AL|+|AN| = (|AC|+|CXa|)+(|AB|+|BXa|) = 2p.

2) Первое равенство получается из 2|AK| = |AK|+|AM| = (|AC|-|CX|)+(|AB|-|BX|) = 2p-2a. Остальные доказываются аналогично.

3) Из 2) и 1) имеем |BX| = p-b = |AL|-|AC| = |CL| = |CXa|.

4) При симметрии относительно биссектрисы [AOa) угла ÐBAC окружности w1 и wa остаются неподвижными и отрезок [BC] одной внутренней касательной переходит в отрезок [B1C1] другой внутренней касательной. Отсюда |BC1| = |B1C| и |C1N| = |CL|. Из последнего равенства в предположении b > c получаем |BC1| = |AN|-|AB|-|CL| = p-c-(p-b) = b-c.

5) Следует из 1) и 2) и из подобия треугольников DAO1K и DAOaL.

6) Следует из 1) и 2) и из подобия треугольников DKO1C и DLCOa.

Лемма доказана.

Лемма 2. Для окружностей w(O,R) и w1(O1,R1) условие invOR(w1) = w1 выполнено тогда и только тогда, когда w^w1.

Доказательство. Пусть invOR(w1) = w1, wÇw1 = {A,B} и w1Ç(OO1) = {X,Y}. Тогда invOR(X) = Y. Отсюда |OX|·|OY| = R2 = |OA|2. Поэтому (OA) - касательная к окружности w1. Что означает (OA)^(O1A) и w^w1.

Предположим теперь, что w^w1. Обозначим через w2 = invOR(w1). Из свойства X получаем w2^w. Поскольку существует единственная окружность, проходящая через A и B (по-прежнему, {A,B} = wÇw1) и перпендикулярная w, w2 = w1. Лемма доказана.

Теорема (Фейербах). Окружность Эйлера треугольника ABC касается вписанной и трех вневписанных окружностей этого треугольника.

Доказательство. Сохраним некоторые обозначения леммы 1. Середины сторон треугольника обозначим через A¢, B¢ и C¢ (рис. 14). На отрезке [XXa] как на диаметре построим окружность w. Из леммы 1 сразу получаем, что точка A¢ будет центром w (так как |BX| = |CXa|), а ее радиус R = |XXa|/2 = (a-2|BX|)/2 = (b-c)/2 (далее предполагаем, что b ³ c). Рассмотрим симметрию относительно w. Из условий w1^w и w1^w и из леммы 2 заключаем, что invOR(w1) = w1 и invOR(wa) = wa. Чтобы найти образ окружности Эйлера (wэ) при инверсии относительно w введем дополнительные обозначения.

Рис. 14

Пусть S - общая точка биссектрисы [AOa) и прямых (BC) и (B1C1). Тогда |SC| = ab/(b+c) и |SB| = ac/(b+c). Отсюда

|SA¢| = (|SC|-|SB|)/2 = a


2 · b-c


b+c .

Пусть также точки B¢¢ и C¢¢ являются соответственно пересечением касательной (B1C1) с прямыми (A¢B¢) и (A¢C¢). Из подобия треугольников DSA¢B¢¢ и DSBC1 получаем

|A¢B¢¢| = |BC1|· |SA¢|


|SB| = (b-c)· a


2 · b-c


b+c


a· c


b+c

= (b-c)2


2c .

Поскольку |A¢B¢| = c/2,

|A¢B¢|·|A¢B¢¢| = (b-c)2/4 = R2. (1)

Рассматривая подобные треугольники DA¢SC¢¢ и DCSB1 приходим к

|A¢C¢¢| = |B1C|· |SA¢|


|SC| = (b-c)· a


2 · b-c


b+c


a· b


b+c

= (b-c)2


2b .

Отсюда

|A¢C¢¢|·|A¢C¢| = (b-c)2


2b · b


2 = R2. (2)

Равенства (1) и (2) означают, что invOR(B¢) = B¢¢ и invOR(C¢) = C¢¢. Поэтому

invOR(wэ) = (B¢¢C¢¢) = (B1C1) и wэ касается invOR(w1) = w1 и invOR(wa) = wa. Аналогично доказывается, что wэ касается оставшихся двух вневписанных окружностей. Теорема доказана.

Нетрудно заметить, что окружность Эйлера wэ треугольника ABC является окружностью Эйлера для каждого из следующих треугольников: DHAB, DHAC, DHBC (H - ортоцентр DABC). Каждый из этих треугольников имеет свою вписанную и три вневписанные окружности. Таким образом, теорема Фейербаха приводит к фантастическому результату: окружность Эйлера треугольника ABC касается по крайней мере шестнадцать окружностей, естественно определенных этим треугольником.

В заключение приведем небольшой список задач для самостоятельного решения. Если какая-либо задача не решается в течение 497 секунд, разрешено посмотреть указание к решению задачи.

Задачи

1. Где-то в пустыне находится лев. Требуется загнать его в круглую клетку (будьте осторожны с выбором своего местоположения).Решение

2. Пусть на плоскости дано конечное множество точек, причем прямая, проходящая через любые две точки этого множества, содержит также третью точку этого множества. Докажите, что все точки данного множества лежат на одной прямой (теорема Сильвестра).Решение

3. На плоскости дано конечное множество точек, причем никакие три из них не лежат на одной прямой, и окружность, проходящая через любые три данные точки, содержит еще одну точку этого же множества. Докажите, что тогда все данные точки лежат на одной окружности.Решение

4. Докажите, что для любых двух непересекающихся окружностей w1 и w2 найдется инверсия, которая переведет их в концентрические окружности w1¢ и w2¢. Решение

5. Даны две непересекающиеся окружности w и w¢, причем w лежит внутри w¢. Окружность w1, одновременно касающаяся w и w¢, обладает свойством Штейнера, если найдется такая цепочка окружностей w1,..., wn, касающихся w и w¢ и таких, что wi касается wi+1 для i < n и wn касается w1. Докажите, что если для окружностей w и w¢ найдется хотя бы одна окружность, обладающая свойством Штейнера, то и любая окружность S1, касающаяся w¢ внутренне и w внешне, обладает свойством Штейнера (поризм Штейнера). Решение

6. Вывести формулу Герона-Архимеда для вычисления площади треугольника ABC: S2DABC = p(p-a)(p-b)(p-c) (обозначения из леммы 1 последнего параграфа). Решение

7. Доказать, что точка пересечения медиан DABC, ортоцентр и центр описанной около DABC окружности лежат на одной прямой (прямая Эйлера). Решение

8. Докажите, что центр окружности Эйлера лежит на прямой Эйлера. Решение

Указания к решению задач

1. Выходя на охоту, следует вооружиться свойством II инверсии.

2. Обозначим через di,j,k расстояние от точки Ai до прямой (AjAk), проходящей через точки Aj и Ak данного множества. Предположим противное и, например, d1,2,3 - минимальное ненулевое число среди di,j,k. На прямой (A2A3) найдите точку Aj и получите противоречие с минимальностью d1,2,3.

3. Сделайте инверсию с центром в одной из точек данного множества и воспользуйтесь свойством VIII и теоремой Сильвестра.

4. Докажите сначала (например, координатным методом), что для любых двух неконцентрических окружностей w1 и w2 геометрическим множеством точек плоскости, отрезки касательных из которых к w1 и w2 равны между собой, является прямая (радикальная ось окружностей w1 и w2). Пусть теперь a - радикальная ось окружностей w1 и w2 с центрами O1 и O2 соответственно и X - точка пересечения прямых a и (O1O2). Построим окружность w3 с центром в X и радиусом равным отрезку касательной из точки X к w1. Тогда w3^w1 и w3^w2. Обозначим через O одну из точек пересечения w3 с (O1O2). Докажите теперь, что O - центр искомой инверсии (используйте лемму 2 и свойства VI и IX).

5. Переведите подходящей инверсией окружности w и w¢ в концентрические окружности.

6. Следует перемножить три равенства: 5, 6 (лемма 1) и равенство p = p.

7. При гомотетии с центром в точке пересечения медиан и коэффициентом -1/2 ортоцентр треугольника ABC перейдет в ортоцентр треугольника A¢B¢C¢, составленного из средних линий исходного треугольника. Осталось заметить, что ортоцентр DA¢B¢C¢ совпадает с центром окружности, описанной около DABC. Кстати, коэффициент гомотетии одновременно указывает на отношение, в котором точка пересечения медиан делит отрезок, соединяющий ортоцентр с центром описанной окружности DABC.

8. Докажите сначала (используя свойства средних линий), что середины (точки A1, B1, C1) трех отрезков, соединяющих ортоцентр H треугольника DABC с его вершинами, лежат на окружности Эйлера. Если Oэ - центр окружности Эйлера, то относительно Oэ треугольники DA1B1C1 и DA¢B¢C¢ (A¢, B¢, и C¢ - середины сторон DABC) будут ценрально-симметричными. Отсюда сделайте вывод, что точка Oэ является серединой отрезка, соединяющего точку H с центром описанной окружности около DABC.

В следующих книгах вы можете найти дополнительную информацию по данной теме.

Список литературы

Характеристики

Тип файла
Документ
Размер
786,75 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее