7068-1 (612441), страница 2

Файл №612441 7068-1 (Симметpия относительно окpужности) 2 страница7068-1 (612441) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Решение A. Обозначим через A, B, C, и D соответственно точки касания w1Çw2, w2Çw3, w3Çw4 и w4Çw1. Сделаем инверсию с центром в O = A относительно окружности некоторого радиуса R. По свойству VIII и IX получим пару параллельных прямых a = invOR(w1), b = invOR(w2) и пару касающихся окружностей w3¢ = invOR(w3) и w4¢ = invOR(w4) (рис. 7).

Рис. 7

Нетрудно заметить, что точки касания исходных окружностей, за исключением точки A (которую инверсия забросит в бесконечность), отобразятся в точки касания образов. Докажем теперь, что B¢, C¢ и D¢ лежат на одной прямой. Так как (KB¢)||(LD¢), то ÐB¢KC¢ = ÐC¢LD¢. Отсюда следует равенство ÐKC¢B¢ = ÐLC¢D¢ (DKC¢B¢ и DLC¢D¢ являются равнобедренными), поэтому B¢, C¢ и D¢ лежат на одной прямой. Обозначим эту прямую через c и подействуем на нее снова инверсией invOR. Ее образ - это окружность invOR(c), которая проходит через центр инверсии, точку A, а также через точки B = invOR(B¢), C = invOR(C¢) и D = invOR(D¢).

Геометрия Мора-Маскерони

Теория построения одним циркулем получила свою известность благодаря книге "Геометрия циркуля"(1797 г.) Лоренцо Маскерони3. Значительно позже в одном из букинистических магазинов была обнаружена книга датского математика Георга Мора "Датский Евклид", датированная 1672 годом! Обе книги содержат основной результат геометрии циркуля:

Теорема Мора-Маскерони. Все построения, выполненные с помощь циркуля и линейки, могут быть проделаны только с помощью циркуля (при этом мы считаем прямую построенной, если найдены хотя бы две точки этой прямой).

Для доказательства этой теоремы достаточно научиться находить только с помощью циркуля пересечения двух прямых, прямой и окружности, что и составляет проблему D. Сначала рассмотрим решения задач B и C, которые носят вспомогательный характер.

Решение B. Чтобы разделить отрезок [AB] на n равных частей, сначала увеличим его в n раз, т.е. найдем точку C, что |AC| = n|AB|. А затем построим точку C¢ - образ точки C при инверсии относительно окружности w(A,|AB|). Из соотношения |AC|·|AC¢| = |AB|2 получаем |AC¢| = |AB|/n. Все указанные построения можно выполнить только с помощью циркуля (для этого даже не нужна прямая (AB)).

Решение C. Выберем произвольную точку O окружности w1(X,r), центр X которой нам нужно определить (рис. 8).

Рис. 8

Из точки O проведем произвольную окружность w(O,R) так, чтобы она пересекала исходную окружность w1. Обозначим точки пересечения wÇw1 через A и B. Куда перейдет прямая (AB) при инверсии invOR? Конечно же в w1, поскольку точки A и B остаются неподвижными (свойства II и VI). По свойству VII центр invOR((AB)) (т.е. центр w1) является образом точки S(AB)(O) при invOR. Из этих рассуждений следует цепочка необходимых построений. Сначала находим точку O1 = S(AB)(O), симметричную O относительно прямой (AB) (школьная задача). А затем строим образ точки O1 при invOR, он и будет искомым центром. Все указанные построения выполняются только с помощью циркуля.

Решение D. Опишем поиск пересечения двух прямых только с помощью циркуля. Пусть даны точки A, B, C и D (рис. 9).

Рис. 9

Выберем точку O так, чтобы она не лежала на прямых a = (AB) и b = (CD). При инверсии invOR прямые a и b должны перейти в окружности invOR(a) и invOR(b), а их точка пересечения отобразится в точку пересечения окружностей invOR(a) и invOR(b), отличную от точки O (свойства VI и I). Теперь необходимые построения становятся очевидными: с помощью свойства VII строим окружности invOR(a) и invOR(b), находим точку пересечения этих окружностей - точку X, и снова действуем инверсией уже на точку X. Точка Y = invOR(X) является искомой. Пересечение прямой и окружности находится похожим образом.

Теперь терема Мора-Маскерони следует из решений задач B, C и D.

Задача Аполлония

В этом параграфе рассмотрим задачу о построении окружности, касающейся трех данных окружностей, названную в честь крупнейшего специалиста по коническим сечениям древности Аполлония Пергского4. Решению проблемы G предшествуют решения задач E и F.

Решение E. Чтобы построить окружность w2, проходящую через точки A и B и касающуюся данной окружности w1, рассмотрим инверсию с центром в точке O = A относительно окружности произвольного радиуса R. Образом w2 при инверсии invOR должна быть некоторая прямая a, проходящая через точку B¢ = invOR(B) и касающаяся окружности invOR(w1) (свойства VIII и IX). Касательные из произвольной точки X к произвольной окружности w(Y,r) провести довольно легко: для этого достаточно построить вспомогательную окружность w¢ на диаметре [XY] и соединить X с точками пересечения wÇw¢. Теперь выполняем необходимые построения в следующем порядке: находим B¢ = invOR(B) и invOR(w1), через точку B¢ проводим касательные a и b к окружности invOR(w1), строим образы invOR(a) и invOR(b) при инверсии invOR. В зависимости от расположения точки B¢ относительно окружности invOR(w1) может быть два, одно и ни одного решения (например, когда B¢ находится внутри invOR(w1)).

Решение F. Для решения этой задачи достаточно уметь проводить общую касательную к двум произвольным окружностям w(X,r) и w¢(Y,R). Будем считать, что r < R. Проведем из точки X касательную a к окружности w1(Y,R-r) (рис. 10), тогда искомая внешняя касательная b к окружностям w и w¢ будет параллельна прямой a и находится от нее на расстоянии r.

Рис. 10

Для проведения внутренней касательной вместо w1(Y,R-r) надо рассмотреть окружность w2(Y,R+r). В общем случае возможно до четырех решений. Теперь вернемся к исходной задаче. Пусть даны точка A и две окружности w1 и w2. Искомая окружность w, проходящая через A и касающаяся w1 и w2, при инверсии с центром O = A должна перейти в некоторую прямую a, которая касается окружностей invOR(w1) и invOR(w2) (свойства VIII и IX). Таким образом, приходим к следующему порядку построений: находим invOR(w1) и invOR(w2), проводим общие касательные (a,b,c,d) и строим образы этих касательных при invOR. В общем случае получится до четырех искомых окружностей, однако в одном случае решений будет бесконечно много (представьте, что произойдет после инверсии с окружностями w1 и w2, если они касаются в точке A).

Решение G. Задача Аполлония легко сводится к предыдущей задаче. Пусть даны окружности w1(O1,r1), w2(O2,r2) и w3(O3,r3), и r1 < r2 < r3. Построим окружность w(O,R), проходящую через точку O1 и касающуюся окружностей

w2(O2,r2-r1) и w3(O3,r3-r1). Уменьшив радиус окружности w на r1, т.е. рассматривая w(O,R-r1), приходим к одной из искомых окружностей. Количество решений исследовать самим (кажется, исключая бесконечный случай, возможно до восьми решений).

Изменение расстояния при инверсии

Основой исследований в этом параграфе будет формула V для вычисления расстояния между образами точек A и B при инверсии относительно w(O,R): |A¢B¢| = |AB|R2/(|OA|·|OB|). Из этой формулы сразу видно, что расстояние при инверсии для произвольных точек A и B не сохраняется и искажение расстояния происходит сильнее при приближении точек A и B к центру окружности инверсии. Прежде чем установить менее очевидный факт, введем важное в теории круговых преобразований5 понятие двойного отношения четырех точек.

Определение. Двойным отношением четырех точек A, B, C и D называют число

|AC|


|BC| : |AD|


|BD| .

Теорема. Двойное отношение четырех точек сохраняется при инверсии.

Доказательство. Обозначим через A¢, B¢, C¢ и D¢ соответственно образы точек A, B, C и D при инверсии относительно окружности w(O,R). Тогда из формулы V имеем

|A¢C¢|


|B¢C¢| : |A¢D¢|


|B¢D¢| = |AC|/(|OA|·|OC|)


|BC|/|OB|·|OC| : |AD|/(|OA|·|OD|)


|BD|/(|OB|·|OD|) =

= |AC|


|BC| : |AD|


|BD| .

Следующая теорема является решением проблемы H.

Теорема. Пусть даны точки A, B и число k > 0 (k ¹ 1). Множество F состоит из всех таких точек X плоскости, для которых |XA|:|XB| = k. Тогда F является окружностью (окружность Аполлония), центр которой лежит на прямой (AB).

Доказательство. На прямой (AB) можно легко найти две точки O и C, принадлежащие множеству F (одна из них будет внутренней точкой отрезка [AB], другая - внешней точкой этого отрезка). Рассмотрим инверсию относительно окружности с центром в точке O произвольного радиуса R. Для образов точек A, B и C имеем

|C¢A¢|


|C¢B¢| = |CA|R2/(|OC|·|OA|)


|CB|R2/(|OC|·|OB|) = |CA|


|CB| : |OA|


|OB| = k:k = 1. 1

Пусть X¢ = invOR(X) и F¢ = invOR(F). Тогда, учитывая (1) и сохранение при инверсии отношения четырех точек, получаем

X Î FÛ |XA|


|XB| : |CA|


|CB| = k:k = 1Û

Û |X¢A¢|


|X¢B¢| : |C¢A¢|


|C¢B¢| = 1Û |X¢A¢|


|X¢B¢| = 1.

Последнее означает, что F¢ - серединный перпендикуляр к отрезку [A¢B¢]. Отсюда F = invOR(F¢) - окружность, диаметр которой лежит на прямой (AB).

Формула следующей теоремы, названная в честь Леонарда Эйлера6, связывает между собой радиусы вписанной и описанной окружностей произвольного треугольника с расстоянием между их центрами.

Теорема. Пусть для произвольного треугольника ABC числа r, R и d соответственно обозначают радиусы вписанной и описанной окружностей и расстояние между их центрами. Тогда d2 = R2-2Rr.

Доказательство. Точки касания вписанной окружности w(O,r) со сторонами [AB], [AC] и [BC] обозначим соответственно через K, L и M (рис. 11).

Рис. 11

Пусть также w1(O1,R) - описанная около треугольника DABC окружность. Рассмотрим инверсию относительно вписанной окружности w(O,r). Так как прямые (AK) и (AL) являются касательными к окружности инверсии, образом точки A будет середина отрезка [KL] (точка A¢), аналогично B¢ = invOr (B) - середина [KM] и C¢ = invOr (C) - середина [LM]. Образом окружности w1(O1,R) будет окружность w1¢, проходящая через точки A¢,B¢,C¢ и имеющая радиус равный r/2 (так как при гомотетии HO-1/2 окружность w переходит в окружность, проходящую через середины сторон DKLM, т.е. в w1¢). Теперь попробуем выяснить, как вообще изменяется радиус окружности при инверсии. Обозначим через X и Y точки диаметра окружности w1(O1,R), лежащие на прямой (OO1) (рис. 12).

Рис. 12

По свойству IX отрезок [invOr(X) invOr (Y)] является диаметром окружности

invOr (w1), а по свойству V его длина равна

|X¢Y¢| = |XY|


|OX|·|OY| ·r2 = 2Rr2


Характеристики

Тип файла
Документ
Размер
786,75 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее