84053 (612432), страница 4

Файл №612432 84053 (Изучение функций в курсе математики VII-VIII классов) 4 страница84053 (612432) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Другое отличие состоит в том, что характер изменения значений функции у=х2 неравномерный: на одних участках она растет быстрее, на других — медленнее. Эта особенность выявляется при построении графика, причем целесообразно рассмотреть два графика: один — в крупном масштабе на промежутке,. -1≤x≤1, другой—в мелком масштабе на промежутке, например, -3≤х≤3. Построение можно вести описанным выше методом загущения. Важно отметить свойство параболы - симметричность относительно оси абсцисс; в дальнейшем это свойство приведет к рассмотрению класса четных функций, причем именно функция у = х2 будет ведущим примером функции этого класса.

Наиболее существенное применение, эта функция имеет при рассмотрении понятия иррационального числа. Первый пример иррационального числа (-√2) может быть введен различными способами, но независимо от этого необходимо объяснить его связь с графическим методом решения уравнения х2=2.

Изучение класса квадратичных функций начинается с изучения функций вида у=ах2; при этом выясняется геометрический смысл коэффициента а. Далее вводится более широкий класс функций, имеющий вид у=ах2+с. И здесь также коэффициент с получает ясную геометрическую интерпретацию, подойти к которой можно либо явно используя понятие параллельного переноса вдоль оси ординат, либо независимым рассуждением.

Пример 6. Задан график функции у=х2. Построить на этом чертеже график функции у=х2+1.

Заметим, что при заданном значении аргумента хо (рассматриваются, конечно, конкретные значения) значения функции у=х2+1 на одно и то же число, равное 1, больше значений функции у=х2. Поэтому для построения соответствующей точки на графике второй функции достаточно поднять на 1 точку графика первой функции с абсциссой Хо. Следовательно, чтобы построить весь график второй функции, нужно поднять на 1 график первой.

Это рассуждение хорошо усваивается учащимися, целесообразно применить его и при изучении класса линейных функций. В дальнейшем при обобщении свойств графиков его можно сформулировать так: «Чтобы построить график функции у=f(x)+с по известному графику функции у=f(х), можно произвести параллельный перенос второго графика на с единиц вдоль оси ординат».

После этой подготовки, казалось бы, можно приступить к изучению графиков произвольных квадратичных функций. Но здесь возникает трудность: коэффициент при первой степени неизвестного не имеет для квадратичной функции у=ах2+bх+с достаточно простого геометрического смысла. Именно поэтому приходится идти обходным путем, следуя тем же преобразованиям, которые производились при выводе формулы решения квадратного уравнения, и вводить в рассмотрение новый подкласс квадратичных функций вида у=а(х-b)2. Объяснения при построении графиков здесь в целом могут быть такими же, как при рассмотрении функций вида у=x2+с, однако усваивается предлагаемый способ здесь с большим трудом, поэтому требуется достаточное количество упражнений для закрепления. После таких приготовлений построение графика, а также изучение его свойств происходят без принципиальных затруднений.

Отметим здесь один частный, но полезный прием, который состоит в использовании системы заданий, имеющих цель — дать представление о тех или иных чертах данной функции или целого класса без указания точного значения величин, связанных с рассматриваемым вопросом. Этот прием можно назвать качественным или оценочным исследованием функции. Приведем два примера, связанные с изучением квадратичных функций.

Пример 7. На рисунке изображены графики функций у=х2 и у= —0,5х2. Как относительна них пройдет график функции y=0,5х2; -2х2; Зх2? Это задание не предполагает «точного» построения искомого графика; достаточно лишь указание на область, где он расположен, или его эскизное построение.

Пример 8. На рисунке изображен график функции у=х2+1, —2<х<2. Пользуясь этим чертежом, изобразить от руки график функции у=х2+ 0,3. Проверить правильность сделанного эскиза: вычислить значения функции у = х2 при х=±0,5; ±1,5 и отметить точки графика. Каким преобразованием можно перевести график функции

у=х2-1 в график функции у=х2?

Цель задания — согласовать зрительный образ графика, его геометрические свойства и формулу. График функции у = x2 + 0,3 симметричен относительно оси ординат, значит, рисунок не должен быть скошенным. Его симметричность подчеркивается симметричным расположением «пробных» значений аргумента. Положение точек на чертеже должно выправить распространенную неточность в изображении графиков квадратичных функций: нарисованные от руки ветви параболы, как правило, расположены гораздо шире, чем должны быть. Поэтому пробные точки (их ординаты вычисляются по условию, а не ищутся по чертежу) попадают в полосу между изображенными линиями. То, что графики сближаются по мере удаления от начала координат, требует пояснений, которые можно сделать при обсуждении.

К изучению класса кубических функций привлекается прием, аналогичный изучению квадратичных функций, основанный на использовании геометрических преобразований для построения графика произвольной кубической функции из кубической параболы стандартного положения — графика функции у=ах³, а≠0.

Как и в случае с квадратичной функцией у=х² видим , что характер изменения значений функции у=х³ неравномерный: на одних участках она растет быстрее, на других — медленнее. Эта особенность выявляется при построении графика, причем целесообразно рассмотреть два графика: один — в крупном масштабе на промежутке,. -1≤x≤1, другой—в мелком масштабе на промежутке, например, -2≤х≤2. Построение можно вести описанным выше методом загущения. Важно отметить свойство кубической параболы - симметричность её графика относительно начала координат.

Далее вводится более широкий класс функций, имеющий вид у=ах3+с. И здесь также коэффициент с получает ясную геометрическую интерпретацию, подойти к которой можно либо явно используя понятие параллельного переноса вдоль оси ординат, либо независимым рассуждением.

Пример 9. Задан график функции у=х³. Построить на этом чертеже график функции у=х³-2.

Здесь также можно поступить по аналогии с рассмотренными примерами при рассмотрении квадратичной функции.

Далее необходимо подвести учащихся к основным свойствам функции y=x3:

Область определения - вся числовая прямая;

y=x3 -нечетная функция;

Функция возрастает на всей числовой прямой.

Методика введения понятия обратной функции и функции вида y=√¯х в VIII классе

Понятие обратной функции не имеет аналогов, поэтому приходится вводить их посредством явного определения. Роль обратной функции велика. Использование обратной функции необходимо для введения большого количества классов основных элементарных функций: корня k-й степени, логарифмической , обратных тригонометрических функций. При изучении обратной функции выясняется зависимость ее монотонности от монотонности исходной функции – это необходимо для того, чтобы обосновать существование обратной функции и подробно рассматривать взаимное расположение графиков данной и обратной функций.

Преподаватель может подвести учащихся к понятию обратной функции, поставив новую для учащихся познавательную задачу. На основе усвоенного учениками важного представления, входящего в понятие функции,— однозначности соответствия аргумента и определенного по нему значения функции провести следующее рассуждение:

«Каждому допустимому значению переменной x равенство y=f(x) ставит в соответствие вполне определенное значение переменной величины y. Однако в некоторых случаях соотношение y=f(x) можно рассматривать и как такое равенство, которое каждому допустимому значению переменной величины y ставит в соответствие вполне определённое значение переменной величины x.» Далее следует пояснение данного сопоставления на примере.

Пример 10. Равенство y=2x-1 каждому значению y ставит в соответствии следующее значение x: x=(y+1)/2. например при у=1 х=1; при у=2 х=1,5; при у=3 х=2 и так далее. Поэтому можно сказать что равенство y=2x-1 определяет х как некоторую функцию переменной величины у. В явном виде эта функция записывается таким образом: : x=(y+1)/2.

«Если в каждом случае обозначить независимую переменную буквой х, а зависимую переменную буквой у, то получим формулы:

y=f(x), и х=φ(у) во второй формуле у выступает в качестве аргумента, а х – в роли функции. Переписав в привычном виде мы получим у=φ(х).

Определенная таким образом функция у=φ(х) называется обратной по отношению к функции y=f(x).

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x.»

Методика введения понятия функции вида y=√¯х основана на на аналогичном примере:

Пример 11. Пусть длина стороны квадрата равна а см, а его площадь S cм². Каждому, значению стороны квадрата а соответствует единственное значение его площади S. Зависимость площади квадрата от его стороны выражается формулой S=a², где a>0. Наоборот, для каждого значения площади квадрата S можно указать соответствующее ему единственное значение стороны а. Зависимость стороны квадрата от eго площади выражается формулой a=√¯S Формулами S=a², где a>0, a=√¯S задаются функциональные зависимости между одними и теми же переменными, однако в первом случае независимой переменной является сторона квадрата a, а во втором — площадь S.

Е сли в каждом случае обозначить независимую переменную буквой х, а зависимую переменную буквой у, то получим формулы:

у=х² , где х>0, и у=√¯х.

Построим график известной учащимся функции у=х² и предложить им составить таблицу значений функции у=√¯х.

Х

0

0,5

1

2

3

4

5

6

У

0

0,7

1

1,4

1,7

2

2,2

2,4

По точкам таблицы построить график функции у=√¯х и затем предложить сформулировать некоторые свойства функции.

Подвести учащихся к понятию симметричности графиков относительно

прямой у=х.

Для закрепления темы найти по графику значения аргумента по функции и наоборот.

Пример 12. Пользуясь графиком найдите:

а) значение √¯х при х=0,5; 5,5; 8,4;

б) значение х, которому соответствует √¯х =1,2; 1,7; 2,5.

Заключение

Рассмотренные выше подходы к изучению функций в школе не охватывают все многообразие способов и методов изучения этого понятия. Они лишь являются основными, наиболее разработанными подходами к вопросу об изучении функций в школе, ориентируясь на которые можно разрабатывать новые, специфические методы обучения, которые были бы лишены недостатков вышеперечисленных подходов и были бы следующим шагом в деле обучения математике в школе.

Список литературы

Лященко Е.И. Изучение функций в курсе математики восьмилетней школы. Минск, 1970 г.

Алгебра: учебник для 7 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского – 5-е издание – М.Просвещение,1997.

Алгебра: учебник для 8 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского – 2-е издание – М.Просвещение,1991.

Виленкин Н.Я. и др. Современные основы школьного курса математики. – М.Просвещение,1980.

Блох А.Я., Гусев В.А. и др. Методика преподавания математики в средней школе. – М.Просвещение,1987.

5. Крамор В. С. Повторяем и систематизируем школьный курс алгебры и начал анализа, Москва, Просвещение, 1990 г.

6. Рыбников К.А. Возникновение и развитие математической науки, Москва, Просвещение, 1987 г.

Характеристики

Тип файла
Документ
Размер
2,15 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее