50054 (609864)

Файл №609864 50054 (Перспективы развития вычислительных систем. Квантовые компьютеры и нейровычислители)50054 (609864)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Федеральное агентство по образованию

Саратовский государственный технический университет

Кафедра информационных систем и технологий

Курсовая работа по теме:

Перспективы развития вычислительных систем. Квантовые компьютеры и нейровычислители

Саратов

2010

Оглавление

Введение

1. Нейровычислитель

2. Перспективы нейровычислителей

3. Квантовые компьютеры

4. Перспективы квантовых компьютеров

Заключение

Список использованных источников

Введение

Современный компьютер представляет собой кульминацию многих лет технологического развития, начиная с ранних идей Чарльза Бэббеджа и окончательного создания первого компьютера немецким инжененером Конрадом Зюсе в 1941 году. Компьютер перед вами в принципе не отличается от своих 30-тонных предшественников, которые были заполнены 18000 вакуумных ламп и 500 милями проводов. Хотя компьютеры стали компактными и значительно быстрее, чем раньше, справляются со своей задачей, сама задача остается прежней: манипулировать последовательностью битов и интерпретировать эту последовательность как полезный вычислительный результат.

Также следует отметить, что М. Минский сформулировал гипотезу: производительность параллельной системы растёт (примерно) пропорционально логарифму числа процессоров - это намного медленнее, чем линейная функция. Эта гипотеза позволяет сделать вывод о том, что для того, чтобы увеличить производительность, недостаточно просто развивать классические технологии, а нужно искать принципиально новые подходы.

Параллельно с обычными типами архитектур существуют и развиваются альтернативные, основанные на принципиально иных механизмах, архитектуры.

Целью данной курсовой работы является рассмотрение альтернативных типов вычислительных систем, таких как квантовые компьютеры и нейровычислители, в основе которых лежат новые принципы, которые открывают новые возможности для обработки информации, а также обзор перспектив, открывающихся с использованием этих систем.

1. Нейровычислитель

Нейровычислитель - устройство переработки информации на основе принципов работы естественных нейронных систем. Эти принципы были формализованы, что позволило говорить о теории искусственных нейронных сетей. Проблематика нейрокомпьютеров заключается в построении реальных физических устройств, что позволит не просто моделировать искусственные нейронные сети на обычном компьютере, но так изменить принципы работы компьютера, что станет возможным говорить о том, что они работают в соответствии с теорией искусственных нейронных сетей.

Идея нейро-бионики (создания технических средств на нейро-принципах) стала интенсивно реализовываться в начале 1980-х гг. Импульсом было следующее противоречие: размеры элементарных деталей компьютеров сравнялись с размерами элементарных «преобразователей информации» в нервной системе, было достигнуто быстродействие отдельных электронных элементов в миллионы раз большее, чем у биологических систем, а эффективность решения задач, особенно связанных задач ориентировки и принятия решений в естественной среде, у живых систем пока недостижимо выше.

Другой импульс развитию нейрокомпьютеров дали теоретические разработки 1980-х годов по теории нейронных сетей.

Согласно [1], в отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределённую в связях между очень простыми процессорами, которые часто могут быть описаны как формальные нейроны или блоки из однотипных формальных нейронов. Тем самым основная нагрузка на выполнение конкретных функций процессорами ложится на архитектуру системы, детали которой в свою очередь определяются межнейронными связями. Подход, основанный на представлении как памяти данных, так и алгоритмов системой связей (и их весами), называется коннекционизмом.

Три основных преимущества нейрокомпьютеров:

  1. Все алгоритмы нейроинформатики высокопараллельны, что является залогом высокого быстродействия.

  2. Нейросистемы можно легко сделать очень устойчивыми к помехам и разрушениям.

  3. Устойчивые и надёжные нейросистемы могут создаваться и из ненадёжных элементов, имеющих значительный разброс параметров.

Разработчики нейрокомпьютеров стремятся объединить устойчивость, быстродействие и параллелизм АВМ с универсальностью современных компьютеров.

На роль центральной проблемы, решаемой всей нейроинформатикой и нейрокомпьютингом, А. Горбань предложил проблему эффективного параллелизма.

Для преодоления этого ограничения применяется следующий подход: для различных классов задач строятся максимально параллельные алгоритмы решения, использующие какую-либо абстрактную архитектуру (парадигму) мелкозернистого параллелизма, а для конкретных параллельных компьютеров создаются средства реализации параллельных процессов заданной абстрактной архитектуры. В результате появляется эффективный аппарат производства параллельных программ.

Нейроинформатика поставляет универсальные мелкозернистые параллельные архитектуры для решения различных классов задач. Для конкретных задач строится абстрактная нейросетевая реализация алгоритма решения, которая затем реализуется на конкретных параллельных вычислительных устройствах. Таким образом, нейросети позволяют эффективно использовать параллелизм.

Многолетние работы привели к тому, что к настоящему моменту накоплено большое число различных «правил обучения» и архитектур нейронных сетей, их аппаратных реализаций и приёмов использования нейронных сетей для решения прикладных задач.

Эти интеллектуальные изобретения существуют в виде «зоопарка» нейронных сетей. Каждая сеть из зоопарка имеет свою архитектуру, правило обучения и решает конкретный набор задач. В последнее десятилетие прилагаются серьёзные усилия для стандартизации структурных элементов и превращений этого «зоопарка» в «технопарк»: каждая нейронная сеть из зоопарка реализована на идеальном универсальном нейрокомпьютере, имеющем заданную структуру.

Основные правила выделения функциональных компонентов идеального нейрокомпьютера (по Миркесу):

  1. Относительная функциональная обособленность: каждый компонент имеет чёткий набор функций. Его взаимодействие с другими компонентами может быть описано в виде небольшого числа запросов.

  2. Возможность взаимозамены различных реализаций любого компонента без изменения других компонентов.

      1. Перспективы нейровычислителей

В настоящее время искусственные нейронные сети являются важным расширением понятия вычисления. Они уже позволили справиться с рядом непростых проблем и обещают создание новых программ и устройств, способных решать задачи, которые пока под силу только человеку. Современные нейрокомпьютеры используются в основном в программных продуктах и поэтому редко задействуют свой потенциал параллелизма. В полную силу использование параллельных нейровычислений начнется с появлением на рынке большого числа аппаратных реализаций - специализированных нейрочипов и плат расширений, предназначенных для обработки речи, видео, статических изображений и других типов образной информации.

Прогнозируется появление техники подстраивающейся под пользователя. При помощи нейросетевых блоков можно реализовать механизмы, при помощи которых приборы будут узнавать своих владельцев по голосу, внешнему виду и ряду других уникальных характеристик. Получат развитие и системы жизнеобеспечения так называемых «умных домов», которые станут еще более адаптивными и обучаемыми. На производстве и в различных промышленных системах интеллектуальные нейросетевые контроллеры получат возможность распознавать потенциально опасные ситуации, уведомлять о них людей и принимать адекватные и своевременные меры.

На данный момент нейрокомпьютеры используют в самых разных сферах человеческой деятельности. Это область экспертных систем, область обработки сигналов. Множество систем автоматического управления сейчас построено на нейронных сетях. Нейронные сети иногда являются единственными точными предсказателями временных рядом.

Согласно [2], следует отметить достижения нейронных сетей в ассоциативном поиске текстовой информации. Традиционные методы поиска и фильтрации документов были разработаны для библиотечных баз данных ограниченного объема и заранее известной структуры. Создание глобальной сети привело к тому, что число поставщиков информации стало стремительно расти, при том, что публикуемая ими информация не имеет однородной структуры. Последовавший информационный взрыв стал вызовом стандартным информационным технологиям. Новые масштабы с одной стороны сделали аутсайдерами некоторые ранее конкурентоспособные интеллектуальные технологии, а с другой - стимулировали интенсивные исследования в области статистических методов обработки текстовой информации и новых способов навигации в информационном море. Нейросети являются перспективным инструментом извлечения статистических закономерностей в текстах, и использования этих закономерностей для прецизионной фильтрации документов.

Одной из проблем современных нейровычислителей является их доступность. Они или выпускаются в составе специализированных устройств, или достаточно дороги, а зачастую и то и другое. На их разработку тратится значительное время, за которое программные реализации на самых последних компьютерах оказываются лишь на порядок менее производительными, что делает использование нейропроцессоров нерентабельным. Однако аналогичная проблема раньше стояла и перед обычными компьютерами, поэтому следует ожидать, что нейровычислители станут доступнее.

3. Квантовые компьютеры

Квантовый компьютер - вычислительное устройство, которое путём выполнения квантовых алгоритмов существенно использует при работе квантовомеханические эффекты, такие как квантовый параллелизм и квантовая запутанность.

Квантовый параллелизм заключается в том, что данные в процессе вычислений представляют собой квантовую информацию, которая по окончании процесса преобразуется в классическую путём измерения конечного состояния квантового регистра. Выигрыш в квантовых алгоритмах достигается за счёт того, что при применении одной квантовой операции большое число коэффициентов суперпозиции квантовых состояний, которые в виртуальной форме содержат классическую информацию, преобразуется одновременно.

Квантовую суперпозицию можно представить как некое объединённое состояние двух дискретных величин, которое при измерении дает только одну из них.

Базовые характеристики квантовых компьютеров в теории позволяют им преодолеть некоторые ограничения, возникающие при работе классических компьютеров.

Основой для работы квантового компьютера является Кубит.

Согласно с [3], идея квантовых вычислений, впервые высказанная Ю.И. Маниным и Р. Фейнманом, состоит в том, что квантовая система из L двухуровневых кубитов (квантовых элементов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространством состояний такого квантового регистра является 2L-мерное гильбертово пространство. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером Lкубит может выполнять параллельно 2L операций.

Предположим, что имеется один кубит. В таком случае после измерения, в так называемой классической форме, результат будет 0 или 1. В действительности кубит-квантовый объект и поэтому, вследствие принципа неопределённости, в результате измерения может быть и 0, и 1 с определенной вероятностью. Если кубит равен 0 (или 1) со стопроцентной вероятностью, его состояние обозначается с помощью символа (или ) – в обозначениях Дирака. и - это базовые состояния. В общем случае квантовое состояние кубита находится "между" базовыми и записывается, в виде , где |a|² и |b|² -вероятности измерить 0 или 1 соответственно; ; |a|² + |b|² = 1. Более того, сразу после измерения кубит переходит в базовое квантовое состояние, аналогичное классическому результату.

Приведем для объяснения два примера из квантовой механики: 1) фотон находится в состоянии суперпозиции двух поляризаций; измерение раз и навсегда коллапсирует состояние фотона в таковое с определенной поляризацией; 2) радиоактивный атом имеет определенный период полураспада; измерение может выявить то, что он еще не распался, но это не значит, что он никогда не распадется.

Перейдем к системе из двух кубитов. Измерение каждого из них может дать 0 или 1. Поэтому у системы 4 классических состояния: 00, 01, 10 и 11. Аналогичные им базовые квантовые состояния: . И наконец, общее квантовое состояние системы имеет вид . Теперь |a|² -вероятность измерить 00 и т. д. Отметим, что |a|²+|b|²+|c|²+|d|²=1 как полная вероятность.

В общем случае системы из L кубитов, у неё 2L классических состояний (00000…(L-нулей), …00001(L-цифр), … , 11111…(L-единиц)), каждое из которых может быть измерено с вероятностями 0-100 %.

Характеристики

Тип файла
Документ
Размер
188,97 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
304
Средний доход
с одного платного файла
Обучение Подробнее