47316 (608216)

Файл №608216 47316 (Інтерполювання функцій за формулою Лагранжа)47316 (608216)2016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Зміст

Вступ

1. Теоретична частина

1.1 Постановка задачі

1.2 Використовувані методи і алгоритми

1.3 Вхідні та вихідні дані

2. Практична частина

2.1 Архітектура програми

2.2 Опис програми

2.3 Контрольний приклад

Висновок

Список використаної літератури

Додаток 1

Додаток 2

Додаток 3

Додаток 4

Вступ

Розвиток та значне поширення засобів обчислювальної техніки в останні роки послужило поштовхом для розробки програмного забезпечення різного рівня складності та різного за призначенням.

Для засвоєння вмінь та навичок розробки програмного забезпечення в процесі навчання вивчається предмет «Основи програмування та алгоритмічні мови». Курсовий проект є підсумком отриманих під час навчання знань.

Курсовий проект «Інтерполювання функцій за формулою Лагранжа» розроблений на алгоритмічній мові програмування з використанням модуля користувача для роботи з многочленами та математичних методів обробки інформації.

  • в першому розділі виконується аналіз задачі, що вирішується, а саме: описується математичний аспект задачі, вичленяються базисні операції, які надалі оформляються як відносно незалежні частини програми (процедури і функції), приводяться вхідні дані.

  • в другому розділі розкривається творчий процес рішення: логічне представлення даних, розробка алгоритму, розробка та опис програми.

Проект «Інтерполювання функцій за формулою Лагранжа» носить практичний характер і є досить актуальною.

  1. Теоретична частина

    1. Постановка задачі

Нехай на відрізку [a;b] визначено певний клас функцій {P(x)}, наприклад, клас алгебраїчних многочленів, а в точках x0,x1,...,xn цього проміжку задано значення деякої функції y=f(x): y0=f(x0), y1=f(x1), ..., yn=f(xn). Наближену заміну функції f на відрізку [a;b] однією з функцій P(x) цього класу так, щоб функція P(x) в точках x0,x1,...,xn набувала тих самих значень, що й функція f, називають інтерполюванням або інтерполяцією. Точки x0, x1, ... ,xn називають вузлами інтерполювання, функцію P(x) - інтерполюючою функцією, а формулу f(x)P(x), за допомогою якої обчислюють значення функції f у проміжку [a;b], - інтерполяційною формулою.

Якщо функція P(x) належить до класу алгебраїчних многочленів, то інтерполювання називається параболічним. Параболічне інтерполювання найзручніше, оскільки многочлени, які прості за формою і не мають особливих точок, можуть набувати довільних значень, їх легко обчислювати, диференціювати та інтегрувати.

Сформулюємо задачу параболічного інтерполювання: в n+1 різних точках x0, x1, ... ,xn задано значення функції f: y0=f(x0), y1=f(x1), ..., yn=f(xn) і треба побудувати многочлен

Pn(x)=a0xn+a1xn-1+...+an-1x+an

степеня n, який задовольняв би умови:

Pn(xi)=yi (i=0,1, . . . , n).

Задача має єдиний розв’язок. Многочлен Pn(x) називають інтерполяційним многочленом. Інтерполяційний многочлен єдиний, проте можливі різні форми його запису.

Інтерполяційний многочлен будують тоді, коли:

  1. функцію задано таблично для деяких значень аргументу, а треба знайти її значення для значень аргументу, яких в таблиці нема.

  2. функцію задано графічно, а треба знайти її наближений аналітичний вираз.

  3. функцію задано аналітично, але її вираз досить складний і незручний для виконання різних математичних операцій.

При написанні даної роботи розглядалася задача побудови інтерполяційного многочлена.

Інтерполяційний многочлен Лагранжа має такий вираз:

Ln(x)=

Многочлен Лагранжа зручно будувати у випадку рівновіддалених вузлів.

    1. Використовувані методи і алгоритми

При написанні представленої роботи використовувалися математичні методи, які відповідають основним операціям у кільці многочленів. На кільці многочленів визначеними є операції додавання, віднімання, множення та ділення з остачею. В ролі кільцевого нуля виступає многочлен нульового степеня f(x)=0, в ролі кільцевої одиниці – многочлен нульового степеня f(x)=1. В якості похідних операцій визначаються також: присвоєння, визначення степеня, обчислення значення, вводу та виводу многочлена на екран та в файл, множння многочлена на число. Якщо ми коректно означимо ці операції, то буде досить просто використовувати їх для обчислення коефіцієнтів шуканого многочлена та знаходження його значення для заданого значення х.

    1. Вхідні та вихідні дані

Задане табличне представлення функції:

x

3

7

11

15

19

y

4

10

22

26

23

Методом інтерполяції Лагранжа знайти значення функції при x=13.

Щоб перевірити коректність роботи програми, яку потрібно створити, розв’яжемо цю задачу методами математичного пакету MathCad.


2. Практична частина


2.1 Архітектура програми

Розроблена програма складається з двох частин, кожна з яких записана у окремому файлі: модуль користувача bibl.tpu та прикладна програма lagr.pas. Прикладна програма використовує модуль користувача через механізм uses.

В бібліотеці підпрограм в розділі INTERFACE описані тип poli, що відповідає означенню многочлена (степеня не більше 100), тип mpoli - масиву многочленів, глобальні змінні zero та od, які відіграють роль відповідно нуля та одиниці кільця многочленів.

Там же описані наступні процедури і функції

  1. function stepin(a:poli):integer; (знаходження степеня многочлена)

  2. procedure riv(a:poli;var b:poli); (присвоєння одному многочлену значення іншого)

  3. procedure vvid(n:integer;var a:poli);( ввід многочлена)

  4. function poper(a:poli;m:integer):integer; (знаходження коефіцієнта многочлена, попереднього по відношенню до заданого)

  5. procedure vyvid(a:poli); (вивід многочлена згідно із загальноприйнятими стандартами)

  6. function maxi(n,m:integer):integer; (знаходження числа, більшого з двох)

  7. function mini(n,m:integer):integer; (знаходження числа, меншого з двох)

  8. procedure suma(a,b:poli;var c:poli); (знаходження суми двох многочленів)

  9. procedure nsuma(a:maspoli;n:integer;var c:poli); (знаходження суми n многочленів)

  10. procedure dobchy(a:poli;r:real;var c:poli); (добуток многочлена на скаляр)

  11. procedure pidvst(a:poli;n:integer;var c:poli);(підвищення степеня многочлена на n одиниць)

  12. procedure dobutok(a,b:poli;var c:poli);(знаходження добутку двох многочленів)

  13. procedure ndobutok(a:maspoli;n:integer;var c:poli);(знаходження добутку n многочленів)

  14. procedure mpoli(a:poli;m:integer;var c:poli); (знаходження m-го степеня многочлена)

  15. procedure polipoli(a,b:poli;var c:poli); (знаходження многочлена від многочлена)

  16. procedure dilen(a,b:poli;var c,c1:poli); (знаходження частки і остачі від ділення двох многочленів)

  17. procedure dyfer(a:poli;var b:poli); (знаходження похідної від многочлена)

  18. procedure integ(a:poli;var b:poli); (знаходження невизначеного інтеграла від многочлена)

Тексти процедур та функцій містяться в розділі IMPLEMENTATION.

Прикладна програма викликає з модуля користувача процедури: dobchy – добуток многочлена і числа, dobutok – добуток двох многочленів, suma – сума двох многочленів, vyvid – вивід многочлена на екран, fvyvid – вивід многочлена в файл, znach – обчислення значення многочлена. Крім того, ця програма використовує означений у модулі користувача тип poli (многочлен), а також змінні цього типу: zero (нуль), od (одиниця)

2.2 Опис програми

Лістинг модуля користувача міститься у додатку 2, лістинг прикладної програми – у додатку 3. Прикладна програма lagr.pas містить змінні типу integer та real, типу користувача poli, а ще використовує означену в модулі користувача змінну типу text.

До складу файлу входить директива компілятора $M, яка збільшує розмір стеку до максимально можливого.

Вивід результату роботи програми здійснюється у текстовий файл lagr.txt.

Схема алгоритму прикладної програми розміщена в додатку 1.

Запуск програми здійснюється:

  • за допомогою операційної оболонки Norton Commander шляхом запуску lagr.exe (програма попередньо була прокомпільована з опцією Destination To Memory)

  • з головного меню інтегрованого середовища TurboPascal шляхом вибору опції Run.


2.3 Контрольний приклад

В результаті виконання програми із заданими вхідними даними ми повинні одержати результат:

Многочлен Лагранжа

0.004x4-0.183x3+2.768x2-14.087x+25.958

Значення в точцi iнтерполяцii=24.898


Висновок

В даній курсовій роботі реалізована задача “Знаходження інтерполяційного многочлена Лагранжа”. Здійснено математичний опис задачі, постановку задачі та розробку програмного пакету згідно з постановкою.

Розроблено алгоритм поставленої задачі. Складено і налагоджено програму на мові Pascal. У процесі налагодження було одержано працездатний пакет програм.

Роботу пакету перевірено на контрольному прикладі, одержано результати, що співпадають з теоретичними.

Результат розробки оформлений у вигляді програмного проекту, що приводиться у додатку до курсової роботи.

Подальший розвиток роботи можливий у бік поліпшення зовнішнього інтерфейсу й адаптації програми до ширшого використання.


Список використаної літератури

  1. А.Г. Курош “Курс высшей алгебры”, Государственное издательство физико-математической литературы, Москва, 1982.

  2. Д.Б. Поляков, И.Ю. Круглов “Программирование в среде ТУРБО ПАСКАЛЬ”, Издательство МАИ, Москва, 1992.

  3. Довгаль С.И., Литвинов Б.Ю., Сбитнев А.И. “Персональные ЭВМ. ТурбоПаскаль V6.0”, Информсистема сервис, Київ, 1993.

Додаток 1

Рис. 1 - Блок-схема програми

Додаток 2

Лістинг модуля користувача

UNIT bibl; {Бiблiотека пiдпрограм по роботі з многочленами}

INTERFACE

uses crt;

TYPE

poli=array[0..100] of real;

type maspoli=array[1..20] of poli;

var zero,od:poli;

fi:text;

function stepin(a:poli):integer;

procedure riv(a:poli;var b:poli);

procedure vvid(n:integer;var a:poli);

function poper(a:poli;m:integer):integer;

procedure vyvid(a:poli);

procedure fvyvid(a:poli);

function maxi(n,m:integer):integer;

function mini(n,m:integer):integer;

function znach(a:poli;x:real):real;

procedure suma(a,b:poli;var c:poli);

procedure dobchy(a:poli;r:real;var c:poli);

procedure pidvst(a:poli;n:integer;var c:poli);

procedure dobutok(a,b:poli;var c:poli);

procedure dilen(a,b:poli;var c,c1:poli);

procedure zerod;

implementation

procedure zerod;

var i:integer;

begin

for i:=0 to 100 do begin zero[i]:=0;od[i]:=0;end;

od[0]:=1;

end;

function stepin(a:poli):integer;

{визначення степеня многочлена}

var i:integer;

begin

i:=100;

while ((a[i]=0) and (i>=0)) do i:=i-1;

stepin:=i;

end;

function znach(a:poli;x:real):real;

var i,n:integer;

s,st:real;

begin

s:=a[0];

st:=1;

n:=stepin(a);

for i:=1 to n do

begin

st:=st*x;

s:=s+st*a[i];

end;

znach:=s;

end;

procedure riv(a:poli;var b:poli);

{присвоення одному многочлену значення iншого}

Характеристики

Тип файла
Документ
Размер
513,91 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7033
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее