47284 (608200)
Текст из файла
содержание
Задача 1 4
Задача 2 6
Задача 3 8
Задача 4 11
Список используемой литературы 15
Задача 1
x – количество тысяч деталей, выпускаемых цехами a, b, c i-го склада, где i – номер склада.
xa1 - количество тысяч деталей, выпускаемых цехом a c 1-го склада
xa2 - количество тысяч деталей, выпускаемых цехом a c 2-го склада
xa3 - количество тысяч деталей, выпускаемых цехом a c 3-го склада
xa4 - количество тысяч деталей, выпускаемых цехом a c 4-го склада
xb1 - количество тысяч деталей, выпускаемых цехом b c 1-го склада
xb2 - количество тысяч деталей, выпускаемых цехом b c 2-го склада
xb3 - количество тысяч деталей, выпускаемых цехом b c 3-го склада
xb4 - количество тысяч деталей, выпускаемых цехом b c 4-го склада
xc1 - количество тысяч деталей, выпускаемых цехом c c 1-го склада
xc2 - количество тысяч деталей, выпускаемых цехом c c 2-го склада
xc3 - количество тысяч деталей, выпускаемых цехом c c 3-го склада
xc4 - количество тысяч деталей, выпускаемых цехом c c 4-го склада
Так как производительность цехов в день известна, то можно записать следующее:
Зная пропускную способность складов за день, запишем:
Запишем целевую функцию, при которой стоимость перевозок будет минимальна:
Имеем классическую транспортную задачу с числом базисных переменных, равным n+m–1 , где m–число пунктов отправления, а n – пунктов назначения. В решаемой задаче число базисных переменных равно 4+3-1=6
Число свободных переменных соответственно 12-6=6
Примем переменные x1a, x1b, x2a, x1с, x4с, x3b в качестве базисных, а переменные x2c, x3c, x2b, x3а, x4а, x4b в качестве свободных.
Далее в соответствии с алгоритмом Симплекс метода необходимо выразить базисные переменные через свободные:
В задании требуется найти минимум функции L. Так как коэффициент при переменной x3a меньше нуля, значит найденное решение не является оптимальным.
Составим Симплекс таблицу:
Ответ: при перевозке x3a=4, х1b=4, х1с=16, х2а=35, х3b=26, х4с=8, х1а=х4а=x2b=x4b=x2c=x3c=0 тыс/изд стоимость будет минимальна и составлять 86 тыс/руб.
Задача 2
|
|
|
| |
| | 7 9 | -9 3 | 5 -3 |
| | 2 1 | -1
| 2 - |
| | 3 1 | 3
| -1 - |
| | 6 -3 | 3 -1 | 2 1 |
Так как все
, то это опорное решение.
Найдем оптимальное решение.
|
|
|
| |
| | 16 | 3 | 2 |
| | 3 |
|
|
| | 1 |
| - |
| | 3 | -1 | 3 |
Данное решение является оптимальным, так как все коэффициенты при переменных в целевой функции положительные.
Ответ:
,
,
Задача 3
Заданная задача – транспортная задача с неправильным балансом (избыток заявок).
Необходимо ввести фиктивный пункт отправления Аф с запасом
:
Для нахождения опорного плана используем метод «Северо-западного угла».
| В1 | В2 | В3 |
| |
| А1 | 12 600 | 42 | 25 | 600 |
| А2 | 21 100 | 18 100 | 35 | 200 |
| А3 | 25 | 15 200 | 23 | 200 |
| А4 | 21 | 30 100 | 40 | 100 |
| А5 | 20 | 32 400 | 50 | 400 |
| АФ | 0 | 0 200 | 0 300 | 500 |
| | 700 | 1000 | 300 | 2000 |
Решение является опорным.
| В1 | В2 | В3 |
| |
| А1 | 12 600 | 42 | 25 | 600 |
| А2 | 21 | 18 200 | 35 | 200 |
| А3 | 25 | 15 200 | 23 | 200 |
| А4 | 21 100 | 30
| 40 | 100+ |
| А5 | 20 | 32 400- | 50 | 400- |
| АФ | 0 | 0 200 | 0 300 | 500 |
| | 700 | 1000 | 300 | 2000 |
Решение является опорным, но вырожденным. Для того чтобы свести вырожденный случай к обычному решению, изменим запасы на малую положительную величину
так, чтобы общий баланс не нарушился.
| В1 | В2 | В3 |
| |
| А1 | 12 600 | 42 | 25 | 600 |
| А2 | 21 | 18 200 | 35 | 200 |
| А3 | 25 | 15 200 | 23 | 200 |
| А4 | 21 | 30 100+ | 40 | 100+ |
| А5 | 20 100 | 32 300- | 50 | 400- |
| АФ | 0 | 0 200 | 0 300 | 500 |
| | 700 | 1000 | 300 | 2000 |
Получили оптимальное решение.
Проверим правильность решения задачи методом потенциалов.
Пусть
, тогда
Так как среди найденных чисел
нет положительных, то найденный план является оптимальным.
Ответ: 28400
Задача 4
Найти
При ограничениях
-
Определение стационарной точки
-
Проверка стационарной точки на относительный максимум или минимум
,
, следовательно, стационарная точка является точкой относительного максимума.
-
Составление функции Лагранжа
Применяем к функции Лагранжа теорему Куна-Таккера.
I
II
-
Нахождение решение системы I. Оставим все свободные переменные в правой части.
(1)
(из II)
Система уравнений II определяется условиями дополняющей нежесткости:
-
Введем искусственные переменные
,
в первые два уравнения системы (1) со знаками, совпадающими со знаками соответствующих свободных членов:
Проверяем условие выполнения дополняющей не жесткости:
Все четыре условия выполняются
Ответ: Решения
и
являются оптимальным решением квадратичного программирования.
Тогда
Список используемой литературы
-
Волков И. К., Загоруйко Е. А. Исследование операций. – Москва: Издательство МГТУ имени Баумана Н. Э., 2000г. – 436с.
-
Кремер Н. Ш. Исследование операций в экономике. – Москва: Издательское объединение «ЮНИТИ», 1997г. – 407с.
-
Курс лекций Плотникова Н.В.
4
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
,
в первые два уравнения системы (1) со знаками, совпадающими со знаками соответствующих свободных членов: 














