46770 (607935), страница 2

Файл №607935 46770 (Алгоритмы сортировки, поиска кратчайшего пути в графе и поиска покрытия, близкого к кратчайшему) 2 страница46770 (607935) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1) A[1]>A[2]; j=6

2) A[2]>A[3], A[1] =, A[2] = 44, j= 4

3) A[3]>A[4], A[2] =6, A[3] =12, j=5

4) A[4]>A[5], A[3] =6, A[4] =12, j=6

5) A[5]>A[6], j =7

6) A[6]>A[7], A[5] =6, A[6] = 18 , j=8

7) r =7.

Шаг 3.

  1. A[7]>А[8] , j = j -1 =7

  2. A[6]>A[7], x=18, A[6]=6, A[7]=x=18 ; j=6

  3. A[5]>A[6], A[5] =6, A[6] = 94; j=5

  4. A[4]>A[5], A[4] =6, A[5] =42; j=4

  5. A[3]>A[4], A[3] =6, A[4] =12; j=3

  6. A[2]>A[3], A[2] =6, A[3] = 55; j=2

  7. A[1]>A[2], A[1] =6, A[2] = 44; j=1

  8. l=3.

Шаг 4.

1) A[1]>A[2], x=18, A[6]=6, A[7]=x=18 ; j=6

2) A[2]>A[3], A[1] =, A[2] = 94, j= 4

3) A[3]>A[4], A[2] =6, A[3] =42, j=5

4) A[4]>A[5], A[3] =6, A[4] =12, j=6

5) A[5]>A[6], j =7

6) A[6]>A[7], A[5] =6, A[6] = 44 , j=8 ,

7) r =7. → конец алгоритма.

Таким образом, мы получили исходный массив, отсортированный методом Шейкер:

6, 12, 18, 42, 44, 55, 67, 94.

3 АЛГОРИТМ ПОКРЫТИЯ: ПОСТРОЕНИЕ ОДНОГО КРАТЧАЙШЕГО ПОКРЫТИЯ

3.1 Математическое описание задачи и методов её решения

Пусть -опорное множество. Имеется множество

подмножеств множества B ( ). Каждому подмножеству сопоставлено число , называемой ценой. Множество называется решением задачи о покрытии, или просто покрытием, если выполняется условие , при этом цена . Термин «покрытие» означает, что совокупность множеств содержит все элементы множества В, т.е. «покрывает» множество B

Безизбыточным называется покрытие, если при удалении из него хотя бы одного элемента оно перестает быть покрытием. Иначе - покрытие избыточно.

Покрытие Р называется минимальным, если его цене - наименьшая среди всех покрытий данной задачи.

Покрытие Р называется кратчайшим, если l - наименьшее среди всех покрытий данной задачи.

Удобным и наглядным представлением исходных данных и их преобразований в задаче о покрытии является таблица покрытий. Таблица покрытий - это матрица Т отношения принадлежности элементов множеств опорному множеству В. Столбцы матрицы сопоставлены элементам множества В, строки - элементам множества

А:

Нули в матрице T не проставляются.

Имеются следующие варианты формулировки задачи о покрытии:

1. Требуется найти все покрытия. Для решения задачи необходимо выполнить полный перебор всех подмножеств множества А.

2. Требуется найти только безызбыточные покрытия. Не существует простого и эффективного алгоритма, не требующего построения всех избыточных покрытий: хорошо, если уменьшается их количество. (Используется граничный перебор либо разложение по столбцу в ТП).

Требуется найти одно безизбыточное покрытие. Решение задачи основано на сокращении таблицы.

Задачи о покрытии могут быть решены точно (при небольшой размерности) либо приближенно (см. [2] ).

Для нахождения точного решения используются такие алгоритмы.

1) Алгоритм полного перебора. (Основан на методе упорядочения перебора подмножеств множества А).

2) Алгоритм граничного перебора по вогнутому множеству. (Основан на одноименном методе сокращения перебора).

3) Алгоритм разложения по столбцу таблицы покрытия. Основан на методе сокращения перебора, который состоит в рассмотрении только тех строк таблицы покрытия, в которых имеется "1" в выбранном для разложения столбце.

4) Алгоритм сокращения таблицы покрытия. Основан на методе построения циклического остатка таблицы покрытия, для которого далее покрытие строится методами граничного перебора либо разложения по столбцу.

Приближенное решение задачи о покрытии основано на следующем соображении. Если даже сокращенный перебор приводит к очень трудоемкому процессу решения, то для получения ответа приходится отказываться от гарантий построения оптимального решения (минимального либо кратчайшего); однако целесообразно получить не самый худший результат - хотя бы безызбыточное покрытие, удовлетворяющее необходимому условию. При этом в ущерб качеству можно значительно упростить процесс решения.

Для случая построения одного кратчайшего покрытия используется алгоритм построения циклического остатка таблицы покрытий и множества ядерных строк.

3.2 Словесное описание алгоритма и его работы

0) Считаем исходную таблицу покрытий текущей, а множество ядерных строк – пустым.

1) Находим ядерные строки, запоминаем множество ядерных строк. Текущую таблицу покрытий сокращаем, вычеркивая ядерные строки и все столбцы, покрытые ими.

2) Вычеркиваем антиядерные строки.

3) Вычеркиваем поглощающие столбцы.

4) Вычеркиваем поглощаемые строки.

5) Если в результате выполнения пунктов с 1 по 4 текущая таблица покрытий изменилась, снова выполняем пункт 1, иначе преобразование заканчиваем.

Поэтому алгоритм работы следующий:

1) ввод числа строк и столбцов таблицы покрытия;

2) ввод таблицы покрытия ;

3) поиск ядерных строк. Если их нет, то п.4. Иначе, запоминаем эти ядерные строки. Ищем столбцы, покрытые ядерными строками. Вычеркиваем все ядерные строки и столбцы, покрытые ими.

4) вычеркивание антиядерных строк. Переход в п.5.

6) вычеркивание поглощающих столбцов.

7) вычеркивание поглощаемых строк.

8) если в результате преобразований таблица покрытий изменилась, выполняем пункт 3. Иначе - вывод множества покрытия, конец алгоритма.

3.3 Выбор структур данных

Из анализа задачи и ее данных видно, что алгоритм должен работать с таблицей покрытия и с некоторыми переменными, которые представлены ниже (все переменные целого типа):

m – количество строк таблицы покрытия;

n – количество столбцов таблицы покрытия;

i, j – переменные цикла по строкам и столбцам соответственно;

Sprev – предыдущая сумма столбца либо строки;

Scurr – текущая сумма столбца либо строки.

Таблица покрытия — это двумерная матрица. Ее целесообразно представить в виде двумерного массива A(m, n).

P - одномерный массив для хранения номеров строк, покрывающих матрицу. Для хранения номеров выбран массив, поскольку количество строк, хотя и неизвестно заранее, ограничено количеством строк матрицы покрытия (m).

3.4 Описание схемы алгоритма

Блок-схема данного алгоритма изображена на рис. 3 в Приложении.

Сначала вводятся исходные данные: размерность таблицы m и n и сама таблица покрытия (блок 1). Далее происходит поиск пустого столбца (блок 2): это целесообразно, поскольку, если хотя бы один столбец не покрыт, то и не существует покрытия данной таблицы, и, следовательно, конец алгоритма. Далее, если не найдено пустого столбца (проверка в блоке 3), - поиск ядерных строк (блок 4), после –столбцов, покрытых ими (блок 5). После этого вычеркиваются все столбцы и строки, найденные в блоках 4,5 (блок 6).Вычеркиваются антиядерные строки (блок 7). Вычеркиваются поглощающие столбцы (блок 8) . Вычеркиваются поглощаемые строки (блок 9). Если в результате выполнения блоков 6-9 текущая таблица покрытий изменилась, то выполняется блок 4; иначе следует вывод найденного кратчайшего покрытия в виде номеров строк, покрывающих таблицу. Затем конец алгоритма.

3.5 Подпрограммы основного алгоритма

Функция MOJNO_LI(A) ведет поиск пустых столбцов, то есть не покрываемых ни одной строкой. Блок-схема этой функции представлена на рис. 3.1 Приложения. Организуется цикл по всем столбцам (блоки 1-6). В каждом столбце идет счет нулей (счетчик l инициализируется в каждом проходе - блок 2; счет ведется в блоке 5), то есть если встречается хотя бы одна единица (проверка в блоке 3), то происходит переход в следующий столбец. Алгоритм работает до тех пор, пока не будет достигнут конец таблицы (то есть конец цикла по j, блок6) либо пока не будет сосчитано m нулей в одном столбце (проверка условия в блоке 4), то есть l=m. Функция возвращает 0, если найдено m нулей, и 1, если достигнут конец таблицы.

Функция YAD-LINE(A) ведет поиск ядерных строк.. В блоке 1 S инициализируется значением 0. Далее организуется цикл по всем столбцам (блок 2). Обнуляем текущую сумму (блок 4) и считаем сумму в j-м столбце (цикл в блоках 5-7 и собственно суммирование элементов в блоке 6). Далее сравниваем полученную сумму S с 1 (блок 8). Если текущая сумма равна 1, запоминаем её и номеру этого столбца присваиваем 0 (блок 9 . Таким образом, по окончании цикла по j в переменной yad_line(A) будет хранится массив ядерных строк. Блок-схема данного алгоритма изображена на рис. 3.2 в Приложении.

Функция ANTI_LINE ведет поиск антиядерных строк. Переменной S2 присваивается значение 0. Организовывается цикл по строкам. Ищется сумма каждой строки и если она равна 0, то строка вычеркивается. Если нет, то переходим к следующей строке. Блок-схема данного алгоритма изображена на рис. 3.3 в Приложении.

Процедура ERASE(A) реализует вычеркивание столбцов, покрытых ядерными строками. Аналогично данная процедура работает и для самих ядерных строк, и для антиядерных строк, поглощающих столбцов, поглощаемых строк. Чтобы данный столбец (строку) «вычеркнуть», обходимо поставить 1 на его (ее) пересечении с нулевой строкой (столбцом). Блок-схема данного алгоритма изображена на рис. 3.4 в Приложении.

Процедура VIVOD(P) реализует вывод полученного множества строк из массива P. Для этого организуется цикл по элементам массива Р (блоки 1-4), в котором проверяется отмечен ли номер строки i единицей (блок 2). Если да, то выводится номер строки i (блок 3). Блок-схема данного алгоритма изображена на рис. 3.5 в Приложении.

3.6 Пример работы алгоритма

Пусть задана таблица покрытий (см. Таб. 3). Рассмотрим пример работы алгоритма.

1

Таб. 3. Пример.

. Множество ядерных строк пустое.

B

B1

B2

B3

B4

B5

B6

А1

1

1

1

А2

1

1

1

A3

1

1

1

А4

1

1

1

2. Множество антиядерных строк пустое .

3. Вычеркиваем столбцы В1, В3, В5, В6 как поглощающие

4. Вычеркиваем строку А2 как поглощенную.

Теперь таблица покрытий будет иметь вид

(см. Таб .4)

Таб. 4.

В2

В4

А1

А3

1

А4

1

  1. Множество ядерных строк Р={A3, A4}.

  2. Множество антиядерных строк А={А1}.

  3. Множество поглощающих столбцов пустое.

  4. Множество поглощаемых строк пустое.

Теперь таблица покрытий примет вид (см. Таб 5)

В2

В4

А3

1

А4

1

Таким образом кратчайшее покрытие {A3, A4} Таб. 5.

4 АЛГОРИТМ НАХОЖДЕНИЯ КРАТЧАЙШЕГО ПУТИ В ГРАФЕ

4.1 Математическое описание задачи и методов её решения

Характеристики

Тип файла
Документ
Размер
479,75 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее