8212-1 (607660), страница 3
Текст из файла (страница 3)
MOV H,A ;
MOV E,D ;
;
;нормализовать и проверить антипереполнение
SUBF8:
MOV A,H ;
ORA H ;
JM SUBF9 ;
DCR E ;
MOV A,E ;
CPI 0FFH ;
STC ;
JZ SUBFA ;
DAD H ;
JMP SUBF8 ;
;
SUBF9:
CALL PACK ; Преобразование числа в стандартный формат
SUBFA:
RET ;
;
;Умножение чисел с плавающей точкой
MULF:
MOV A,E ;
ORA H ;
ORA L ;
JZ MULF8 ;
MOV A,D ;
ORA B ;
ORA C ;
JNZ MULF1 ;
CALL SWAP ; Обмен содержимого регистров EHL и DBC
JMP MULF8 ;
;
;операнды ненулевые, можно умножать
MULF1:
MOV A,D ;
XRA E ;
STA SIGN ;
CALL REC ; Восстановление числа с плавающей точкой
CALL SWAP ; Обмен содержимого регистров EHL и DBC
CALL REC ; Восстановление числа с плавающей точкой
MOV A,D ;
ADD E ;
JC MULF2 ;
SUI 127 ;
JNC MULF3 ;
JMP MULF8 ;
;
MULF2:
ADI 129 ;
JNC MULF3 ;
JMP MULF8 ;
;
;в аккумуляторе А смещенный порядок произведения
MULF3:
MOV C,A ;
MOV E,B ;
MVI D,0 ;
MOV A,H ;
LXI H,0 ;
XCHG ;
DAD H ;
XCHG ;
;
;начало цикла умножения
MULF4:
ORA A ;
RAR ;
JNC MULF5 ;
DAD D ;
;
MULF5:
JZ MULF6 ;
XCHG ;
DAD H ;
XHG ;
JMP MULF4 ;
;
;проверить нарушение нормализации
MULF6:
JNC MULF7 ;
CALL SHIFT ; Сдвиг содержимого HL вправо на 1 бит:
INR C ;
STC ;
JZ MULF8 ;
;
MULF7:
MOV E,C ;
CALL PACK ; Преобразование числа в стандартный формат
;
MULF8:
RET ;
;
;Деление чисел с плавающей точкой
DIVF:
MOV A,E ;
ORA H ;
ORA L ;
JZ DIVF7 ;
MOV A,D ;
ORA B ;
ORA C ;
STC ;
JZ DIVF7 ;
;операнды не равны нулю
MOV A,D ;
XRA E ;
STA SIGN ;
CALL REC ; Восстановление числа с плавающей точкой
CALL SWAP ; Обмен содержимого регистров EHL и DBC
CALL REC ; Восстановление числа с плавающей точкой
CALL SWAP ; Обмен содержимого регистров EHL и DBC
MOV A,E ;
SUB D ;
JNC DIVF1 ;
ADI 127 ;
CMC ;
JC DIVF7 ; возикло антипереполнение
JMP DIVF2 ; перейти на деление мантисс
;
DIVF1:
ADI 127 ; прибавить смещение
JC DIVF7 ; возникло антипереполнение
;
;можно начинать деление мантисс
DIVF2:
STA EXP ;
XCHG ;
LXI H,0 ;
MVI A,16 ; инициализировать счетчик
PUSH PSW ;
JMP DIVF4 ; войти в цикл деления
;
DIVF3:
PUSH PSW ;
DAD H ; сдвинуть влево
XCHG ; частное и остаток
DAD H ;
XCHG ;
;
DIVF4:
PUSH D ; сохранить остаок в стеке
MOV A,E ; вычесть делитель из остатка
SUB C ;
MOV E,A ;
MOV A,D ;
SBB B ;
MOV D,A ;
JC DIVF5 ;
POP PSW ; удалить остаток из стека
INR L ;
PUSH D ;
;
DIVF5:
POP D ; извлечь предыдущий остаток
POP PSW ; извлечь счетчик
DCR A ; декремент счетчика
JNZ DIVF3 ; повторить цикл деления
; деление мантисс закончено
LDA EXP ;
MOV E,A ;
; нормализовать частное
MOV A,H ;
ORA A ;
JM DIVF6 ;
DAD H ;
DCR E ;
CPI 0FFH ; проверить антипереполнение
STC ;
JZ DIVF7 ; возникло антипереполнение
;
DIVF6:
CALL PACK ; Преобразование числа в стандартный формат
DIVF7:
RET ;
;
Контрольная работа № 3
Задача № 1
Построить модель распределения адресного пространства с указанием диапазонов адресов в 16-й системе счисления. В качестве дешифратора адресов используется стандартный дешифратор, к информационным входам которого подключены линии А15, А12, А9 16-разрядной шины адреса.
| Выходы дешиф-ратора | Разряды адреса | Диапазоны адресов | ||||||||||||||||
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||
| Y0 | 0 | X | X | 0 | X | X | 0 | X | X | X | X | X | X | X | X | X | 0000h-01FFh, 0400h-05FFh, 0800h-0DFFh 2000h-21FFh, 2400h-25FFh, 2800h-2DFFh 4000h-41FFh, 4400h-45FFh, 4800h-4DFFh 6000h-61FFh, 6400h-65FFh, 6800h-6DFFh | |
| Y1 | 0 | X | X | 0 | X | X | 1 | X | X | X | X | X | X | X | X | X | 0200h-03FFh, 0600h-07FFh, 0A00h-0FFFh 2200h-23FFh, 2600h-27FFh, 2A00h-2FFFh 4200h-43FFh, 4600h-47FFh, 4A00h-4FFFh 6200h-63FFh, 6600h-67FFh, 6A00h-6FFFh | |
| Y2 | 0 | X | X | 1 | X | X | 0 | X | X | X | X | X | X | X | X | X | 1000h-11FFh, 1400h-15FFh, 1800h-1DFFh 3000h-31FFh, 3400h-35FFh, 3800h-3DFFh 5000h-51FFh, 5400h-55FFh, 5800h-5DFFh 7000h-71FFh, 7400h-75FFh, 7800h-7DFFh | |
| Y3 | 0 | X | X | 1 | X | X | 1 | X | X | X | X | X | X | X | X | X | 1200h-13FFh, 1600h-17FFh, 1A00h-1FFFh 3200h-33FFh, 3600h-37FFh, 3A00h-3FFFh 5200h-53FFh, 5600h-57FFh, 5A00h-5FFFh 7200h-73FFh, 7600h-77FFh, 7A00h-7FFFh | |
| Y4 | 1 | X | X | 0 | X | X | 0 | X | X | X | X | X | X | X | X | X | 8000h-81FFh, 8400h-85FFh, 8800h-8DFFh A000h-A1FFh, A400h-A5FFh, A800h-ADFFh C000h-C1FFh, C400h-C5FFh, C800h-CDFFh E000h-E1FFh, E400h-E5FFh, E800h-EDFFh | |
| Y5 | 1 | X | X | 0 | X | X | 1 | X | X | X | X | X | X | X | X | X | 8200h-83FFh, 8600h-87FFh, 8A00h-8FFFh A200h-A3FFh, A600h-A7FFh, AA00h-AFFFh C200h-C3FFh, C600h-C7FFh, CA00h-CFFFh E200h-E3FFh, E600h-E7FFh, EA00h-EFFFh | |
| Y6 | 1 | X | X | 1 | X | X | 0 | X | X | X | X | X | X | X | X | X | 9000h-91FFh, 9400h-95FFh, 9800h-9DFFh B000h-B1FFh, B400h-B5FFh, B800h-BDFFh D000h-D1FFh, D400h-D5FFh, D800h-DDFFh F000h-F1FFh, F400h-F5FFh, F800h-FDFFh | |
| Y7 | 1 | X | X | 1 | X | X | 1 | X | X | X | X | X | X | X | X | X | 9200h-93FFh, 9600h-97FFh, 9A00h-9FFFh B200h-B3FFh, B600h-B7FFh, BA00h-BFFFh D200h-D3FFh, D600h-D7FFh, DA00h-DFFFh F200h-F3FFh, F600h-F7FFh, FA00h-FFFFh | |
В итоге адресное пространство размером в 64 Кбайт разбито на диапазоны для 8 устройств. В каждом диапазоне выделено 8 участков по 512 байт и 4 участка по 1536 байт.
Задача № 2
Требуется выделить зоны адресного пространства для размещения в них адресов для устройств, указанных в таблице. В качестве адресного дешифратора используется ПЗУ. Построить схемы выделения соответствующих блоков адресов и таблицу диапазонов адресов.
| Наименование устройства | Диапазон адресов | Емкость (Кбайт) |
| ПЗУ1 | 0000h-03FFh | 1 |
| ОЗУ1 | 0400h-0BFFh | 2 |
| УВВ1 | 2000h-2FFFh | 4 |
| ПЗУ2 | 3000h-4FFFh | 8 |
| ОЗУ2 | 5000h-6FFFh | 8 |
| УВВ2 | 8000h-FFFFh | 32 |
Так как наименьший блок имеет размер 1К ячеек, то разрешающая способность дешифратора должна обеспечивать деление адресного пространства с точностью до зон размером 1К ячеек. Анализируя шесть старших разрядов адреса, получаем необходимую точность, поскольку они делят все адресное пространство обьемом 64К ячеек на 26 = 64 части по 1К ячеек, что и требуется.













