12483 (600648), страница 11
Текст из файла (страница 11)
________
R - CH - COOH
I
NH2
В состав белков молока входят как циклические, так и ациклические аминокислоты - нейтральные, кислые и основные, причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным.
Состав незаменимых АК в некоторых белках %
Аминокислоты | Идеальный белок | Казеин | Сывороточные белки молока | Белок яйца | Белок пшеницы | Белок мышц человека |
Валин | 5 | ?.2 | 5,7 | 7,3 | 3 | 6 |
Лейцин | 7 | 9 | 12,3 | 8,8 | - | 9,9 |
Изолейцин | 4 | 6 | 6,2 | 6,6 | 6 | 4,7 |
Метионил | - | 2,8 | 2,3 | - | 2,3 | 2,8 |
Цистил | 3,5 | 0,34 | 3,4 | 5,5 | 2,3 | 1,8 |
Треонин | 4 | 4,9 | 5,2 | 5,1 | 3 | 4,6 |
Лизин | 5,5 | 8,2 | 9,1 | 6,4 | 0,6 | 8,1 |
Фенилаланил | - | 5 | 4,4 | - | 2,5 | 4,7 |
Тирозин | 6 | 6,3 | 3,8 | 10 | 3,1 | 4 |
Триптофен | 1 | 1,7 | 2,2 | 1,5 | 0,9 | 2,2 |
Из таблицы видно, что биологическая ценность казеина несколько ограничивается дефицитом серосодержащих аминокислот - цистина, вместе с тем казеин содержит высокое количество фенилаланина, итрозина и метионина, что вызывает затруднения при их метаболизме в организме грудных детей. В сывороточных белках баланс дефицитных серосодержащих и других незаменимых аминокислот лучше, чем в казеине, и значит биологическая ценность их выше. А в растительных белках недостает триптофана, лизина, которыми богаты молочные белки.
Благодаря тому, что белки молока находятся в растворенном состоянии, они легко атакуются и перевариваются протеолитическими ферментами пищеварительного тракта. Степень усвоения белков молока 96-98%.
Структура белков молока. В свежем молоке белки находятся в нативном состоянии. Структура их идентична структуре белков, полученных путем биосинтеза, т. е. в нативном белке не происходит еще никаких изменений.
Первичная структура определяется числом и расположением - аминокислот, конфигурацией связей в полипептидных цепях, и если белки состоят из нескольких полипептидных цепей - местоположением и типом поперечных связей. Выявлена первичная структура некоторых важных белков молока, в том числе s1- -казеин, Н-казеина. Например, -казеин образуется из полипептидной цепи, в которую входит 209 аминокислот: 4 - аспарагиновая кислота, 5 АСН-аспарагин, 9 - треонина, 11 - серина, 5 - серинфосфорная кислота, 17 - глутаминовая кислота, 22 - глютамин, 35 - пролиновая, 5 - глициновая, 5 - аланин, 19 - валиновая. А - первичная структура s1 - казеин содержит 199 АК, Н - казеин 169, 6 - метионина, 22 - лейцина, 11 - лизина, 5 - гистидина, 4 - изолейцина, 4- тирозина, 1 - трептофана, 5 - аргенина.
АК-пролин определяет структуру и обуславливает складчатое строение полипептидных цепей. АК находятся в цепи в определенной последовательности. Каждая полипептидная цепь имеет концевую NH2 - групп и концевую COOH групп H2N - CH= СН - СООН R
Эти концевые группы могут реагировать с различными химическими веществами.
Первичная структура белков основана на главных валентных пептидных связях и дисульфидных связей. Они настолько стабильны, что при обработке и переработке молока не разрушаются энергетическими воздействиями. Поэтому первичная структура белков молока разрушается только при ферментативном распаде белка в процессе созревания сыров.
Вторичная структура. Это пространственное взаимное расположение аминокислотных остатков в полипептидной цепи и представляет собой цепь спиралеобразной конфигурации, которая образуется за счет водородного мостика между полипептидными цепями.
Водородная связь, обладая незначительной энергией связи, может расщепляться при обработке и переработке молока, например, при высокотемпературной пастеризации.
Третичная структура - представляет пространственное расположение полипептидной цепи, отдельные участки которой могут соединяться между собой прочными дисульфидными связями, возникающими между остатками цистеина. В образовании третичной структуры участвуют и другие связи - гидрофобные, электростатические, водородные и прочие. В зависимости от пространственного расположения полипептидной цепи форма молекул белков может быть различной. Если полипептидная цепь образует молекулу нитевидной формы, то белок называется фибрилярным, если она уложена в виде клубка - глобулярным (глобулус - шарик). Белки молока относятся к глобулярным белкам. Изучение их вторичной и третичной структур показало, что казеин в отличие от обычных глобулярных белков почти не содержит -спиралей, -лактальбулин и -лактоглобулин содержит большое количество спирализованных участков. Казеин, вероятно, занимает промежуточное положение между компактной структурой глобулы и структурой беспорядочного клубка, который обычно наблюдается при денатурации глобулярных белков. Такая структура обеспечивает хорошую расщепляемость казеина протеолитическими ферментами при переваривании в нативном (природном) состоянии без предварительной денатурации.
Четвертичная структура характеризует способ расположения в пространстве отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких таких цепей или субъединиц. Глобулярные белки, обладающие четвертичной структурой, могут содержать большое количество полипептидных цепей, тесно связанных друг с другом в компактную мицеллу, которая ведет себя в растворе как одна молекула.
Так, казеиновая мицелла среднего размера должна состоять из нескольких тысяч полипептидных цепей фракций казеина, определенным образом связанных друг с другом.
Казеин является основным белком молока, его содержание в молоке колеблется от 2,3 до 2,9%. Элементарный состав казеина, %: С - 53,1, Н - 7,1, азот - 15,6, О - 22,6, S - 0,8; Р - 0,8. Он относится к фосфопротеидам, т. е. содержит остатки Н3 РО4 (органически присоединенные к АК-те серину моноэфирной связью (О - Р).
NН ОН
R СН — СН2 — О — Р = О
С ОН
О
Казеин Серинфосфорная кислота
В свежем молоке ККФК содержится в виде амицелл - это агрегаты частиц, состоящих изтак называемых сублицелл.
= 8 - 15 НМ, молекулярная масса 25.000-30.000, которые легко разрушаются под действием внешних факторов, частично уже при разбавлении.
Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция - так называемого казеинат-кальций-фосфатный комплекс (ККФК), в состав которого входит небольшое количество лимонной кислоты, магния, калия и натрия.
Соединение субмицелл в мицеллы происходит с помощью фосфата кальция и кальциевых мостиков. Казеиновые мицеллы сравнительно стабильны в свежевыдоенном молоке. Они сохраняют свою устойчивость при нагревании молока до относительно высоких температур и при его механической обработке. Стабильность мицелл зависит от содержания в молоке растворимых солей кальция, химического состава казеина, РН молока и других факторов.
3. Фаза истинного раствора
1). Молоко и молочная сыворотка как истинный раствор.
2). Ионо-дисперсное состояние минеральных солей.
3). Молекулярно-дисперсное состояние лактозы.
4). Равновесные отношения.
Истинный раствор — это гомогенные смеси, состоящие из растворенных веществ и растворителя. В истинных растворах растворенные вещества находятся либо в молекулярно-дисперсном, либо в ионо-дисперсном состоянии. Именно молочная сыворотка представляет собой истинный раствор. В ней лактоза и водорастворимые витамины присутствуют в молекулярно распределении, а соли электро-
чески диссоциированы и образуют гидратированные ионы. Вот такое распределение можно представить в виде схем:
Истинный раствор
Растворимые вещества Растворитель
вода
молекулярно- ионно-
дисперсные дисперсные
лактоза, водорастворимые соли в форме
витамины катионов и анионов,
лимонная кислота, дву-
окись углерода ионы водорода
Истинно растворимые составные части придают молочной сыворотке определенные свойства, которые зависят от концентрации составных частей и характерны также и для полидисперсной системы молока, причем эти свойства частично ослабляются или усиливаются в зависимости от коллоидно-дисперсного или эмульгированного состояния присутствующих составных частей. Истинно растворимые частицы обуславливают, в частности, осмотическое давление, осмотические явления снижения температуры замерзания и повышения температуры кипения, а также электропроводность молока. Они оказывают сильное влияние на рефракцию, т. е. способность к преломлению света.
Изменения этих физико-химических свойств можно объяснить колебаниями концентрации истинно растворимых составных частей. Так, в соответствии с законом Вигнера содержание истинно растворимых составных частей в течение периода лактации претерпевает самые незначительные колебания. Указанные изменения служат для распознавания фальсификации молока.
Ионно-дисперсные составные части связаны между собой за счет солевого равновесия молока. И любое изменение нормального первоначального равновесия влияет на растворимость отдельных солей и дестабилизацию белков молока. Это приводит к коагуляции при концентрировании и стерилизации.
Если ионы кальция, например, обуславливают стабильность казеина, то по существующей концентрации их можно было бы предсказать возможные дестабилизирующие воздействия их на казеин, что особенно важно для определения необходимого количества солей-стабилизаторов в производстве сгущенного молока. Однако до сих пор это невозможно, и приходится пользоваться элепсерическими величинами, т.к. не все присутствующие ионы кальция активны, а только некоторые из них, но они мало влияют на другие истинно растворимые составные части.
Молочная сыворотка — это реальный раствор, в противоположность идеальному раствору, которые практически реализуется только при бесконечном разбавлении и в котором растворенные частицы не оказывают взаимного влияния друг на друга, концентрация ионов в молочной сыворотке достигает такой величины, что они взаимно влияют друг на друга благодаря электростатическим силам.
Ионно-дисперсное состояние минеральных солей.
Все соли натрия и калия (хлориды, гидро-, дигидрофосфаты, и цитраты) диссоциированы практически нацело и содержатся в молоке в ионном состоянии, например соли натрия:
NaCl Na + + Cl — ; Na2HPO4 2 Na + HPO4 2—
Na H2PO4 Na + H3 PO4 — ; C6 H5 O7 Na3 3 Na + + C6 H5 O7 3 —
В ионно-молекулярном состоянии в молоке содержится часть цитратов и фосфатов кальция и магния:
CaHPO4 Ca 2 + HPO4 2—
Ca(H2PO4)2 Ca2 + 2 H2PO4 —
Ca3(PO)2 3 Ca2 + + 2 PO4 3—
(C6H5O7)2 Ca3 3 Ca2 + + 2 C6H5O7 3—
Фосфаты кальция обладают малой растворимостью и незначительной степенью диссоциации, лишь небольшая часть их содержится в виде истинного раствора, а большая — в виде коллоидного раствора. Между ними устанавливается равновесие, например:
n CaHPO4 (CaHPO4
истинный раствор коллоидный раствор
n Ca3 (PO4)2 Ca3(PO4)2 n
Сдвиг равновесия в ту или другую сторону зависит от рН молока, температуры и других факторов. Соотношение этих форм фосфатов Са играет важную роль в стабилизации белковых частиц молока. Так, фосфаты Са в форме истинного раствора являются источниками образования ионов кальция, от количества (активности) которых зависит размер и устойчивость мицелл казеина при тепловой обработке, а также скорость сычужной коагуляции.
По концентрации отдельных ионов в молоке нельзя судить об их активности, что объясняется действием ионов друг на друга, а также их взаимодействием с дисперсионной средой (водой) и дисперсными фазами других дисперсных систем молока.
В растворе электролитов между ионами действуют силы притяжения и отталкивания. В концентрированных растворах сильные межионные взаимодействия приводят к взаимному связыванию ионов, что влияет на величину осмотического давления, температуру замерзания и электропроводность раствора. Для оценки состояния ионов в растворе электролитов пользуются величинами активности ионов и ионной силы раствора.