10983 (600479), страница 2
Текст из файла (страница 2)
Не обнаружены отличия в частоте ацентрических фрагментов в опытных и контрольных популяциях A. maculatus (F = 0,98, ν = 27, р >> 0,05; рис. 7; стр. VI), в тоже время, в опытных популяциях P. lanceolata наблюдается достоверное увеличение частоты этого вида аберраций по сравнению с контрольными (p < 0,01; рис. 7; стр. V). Однако в хронически облучаемых популяциях P. media отмечено достоверное (р < 0,001) снижение частоты ацентрических фрагментов по сравнению с незагрязненными радионуклидами популяциями.
Как известно, растения с большей плоидностью обладают повышенной неспецифической устойчивостью к действию экстремальных абиотических факторов среды обитания, например, в более высоких широтах преобладают полиплоидные формы, имеющие селективные преимущества по сравнению с диплоидными [18]. Дисперсионный анализ показал достоверное (F = 15,0; ν = 1500; р < 0,001) влияние фактора плоидности на радиоадаптивный ответ исследованных растений: у P. media отмечена меньшая частота аберрантных анафаз как в контрольных (р < 0,001), так и в опытных (р < 0,01) популяциях по сравнению с популяциями P. lanceolata, произрастающими в таких же экологических условиях.
3.1.2 Влияние неравномерного фракционированного облучения на прозанник пятнистый (Achyrophorus maculatus L.)
Из результатов двухфакторного дисперсионного анализа следует, что как хроническое облучение (p < 0,01), так и различным образом организованное дополнительное радиационное воздействие (p << 0,001), а также сочетания этих факторов достоверно (p << 0,001) изменяют радиобиологический ответ исследованных растений.
3.1.2.1 Влияние на индуцированный мутагенез γ-лучей 60Со в дозе 5 Гр
Облучение в дозе 5 Гр в контрольных популяциях не вызывает достоверного изменения частоты как аберрантных анафаз (td = 1,56, ν = ∞, р >> 0,05; рис. 8; стр. VIII), так и частоты дицентриков (Fφ = 1,56, ν = ∞, р >> 0,05; рис. 9; стр. IX) и ацентрических фрагментов (F = 0,94, ν = 18, р >> 0,05; рис. 10; стр. IX). Данные факты позволяют дозу γ-лучей в 5 Гр считать малой для данного вида.
В опытных популяциях частоты аберрантных анафаз (td = 6,77, ν = ∞, р < 0,001; рис. 8; стр. VIII) и ацентрических фрагментов (F = 27,08, ν = 19, р < 0,001; рис. 10; стр. IX) достоверно возрастают, но частота дицентриков не изменяется (Fφ = 0,69, ν = ∞, р >> 0,05; рис. 9; стр. IX).
3.1.2.2. Влияние на индуцированный мутагенез γ-лучей 60Со в дозе 30 Гр
Влияние провокационной дозы в 30 Гр на опытную и контрольную популяции проявляется в достоверном увеличении как частоты аберрантных анафаз (р < 0,001), так и общей частоты аберраций (дицентрики + фрагменты). Между контрольной и опытной популяциями по указанным показателям различий не наблюдается (p >> 0,05), что свидетельствует о достаточности этой дозы для возникновения устойчивого цитогенетического эффекта. В то же время, обращает на себя внимание отсутствие различий в эффектах доз в 30 и 5 Гр в опытной популяции, что может свидетельствовать, на наш взгляд, о действии дополнительных не учитываемых факторов при воздействии малой дозой (рис. 8).
3.1.2.3 Значение временной организации фракционированного облучения в формировании радиологического эффекта
Реакции, возникающие в облученной клетке, подчиняются кинетическим закономерностям, скорость достижения конечного состояния будет определяться не только скоростью прямых, но и скоростью обратных реакций (процессов восстановления). Кинетика процесса будет зависеть от ингибиторов и катализаторов реакции, наличия веществ, обрывающих цепные процессы и других условий [9].
Из данных [20] следует, что существует два механизма адаптивного ответа у растений. Первый – это повышение способности репарировать повреждения ДНК после воздействия малой дозой. Второй – стимулированная репопуляция – феномен, заключающийся в замещении поврежденных клеток неповрежденными.
При часовом интервале между фракциями в контрольных популяциях наблюдается радиологический эффект, подчиняющийся принципу аддитивности: эффекты двух фракций суммируются, так как получено достоверное (p < 0,001) увеличение частоты аберрантных анафаз по сравнению с эффектом дозы в 30 Гр. В опытной популяции не обнаружено отличий между аналогичными вариантами (p > 0,05; рис. 8). Представленные данные свидетельствуют, что у растений из опытной популяции процессы восстановления протекают интенсивнее, что может быть объяснено приспособлением к действию повышенного фона радиации.
В обеих исследованных популяциях наблюдается достоверное снижение частоты аберрантных анафаз при увеличении интервала между фракциями (p < 0,001). Следует обратить внимание, что в опытной популяции частота аберрантных анафаз в варианте с суточным интервалом между фракциями достоверно (Fφ = 4,21, ν = ∞, р < 0,05) меньше, чем в контроле. Данные явления могут быть объяснены процессом стимулированной репопуляции, более интенсивно протекающим в растениях из загрязненной популяции.
3.2 Биохимические исследования
Результаты биохимических исследований представлены в таблице 3 и на рисунках 11, 12 (стр. X), из которых следует, что при добавлении 0,2 мл надосадочной жидкости, содержащей антиоксидантные ферменты, достоверно снижается расход йода (р < 0,01), свидетельствующий о работе антиоксидантных систем. Эти же данные говорят о том, что в пробах обоих видов подорожника, обитающих на загрязненных территориях, антиоксидантные системы работают активнее (p < 0,001). Кроме того, у вида с 2n = 24 (P. media) по сравнению с видом с 2n = 12 (P. lanceolata) расход йода в высшей степени достоверно ниже как в опытных, так и в контрольных вариантах (p < 0,001) (рис. 12). Сказанное свидетельствует о том, что, во-первых, хроническое низкоинтенсивное γ-облучение, вызывающее образование в цитоплазме пероксидов и свободных радикалов, способно активировать антиоксидантные системы у облучаемых растений; во-вторых, у растений с большей плоидностью антиоксидантные ферменты либо активнее, либо присутствуют в клетках в большем количестве. Представленные данные доказывают предположения авторов [16], что характеристики окислительно-восстановительного метаболизма являются основными физиологическими детерминантами радиорезистентности организмов к длительному низкоинтенсивному воздействию.
Вопрос о природе повышенной радиоустойчивости хронически облучаемых популяций растений остается открытым. Несмотря на то, что действие повышенного фона радиации, индуцирующего накопление мутационного груза, в исследованных районах имеет место уже в течение полувека, специфического приспособления к мутагенному действию данного экологического фактора у организмов не выработалось. Одним из ведущих механизмов выступает активация хроническим β- и γ-облучением репарационных систем [3, 17]. На выход индуцированных мутаций влияют генотипические различия организмов, которые обязательно имеют место как внутри популяций, так и между популяциями в особенности. Далее, вновь возникающие наследственные изменения в природных условиях будут подвергаться естественному отбору, направленному, прежде всего на повышение радиоустойчивости [2, 4, 19, 24]. По мнению ряда авторов [2, 3, 4, 19], ионизирующие излучения способны выступать не только мутагенным, но и новым экологическим фактором, отбирающим радиорезистентные фенотипы и гаметы, содержащие оптимальные геномы [2, 19]. Кроме того, из полученных нами данных следует, что еще одним механизмом радиопротекторного эффекта является активация антиоксидантных систем, разрушающих продукты радиолиза воды и органических веществ. Выяснено, что у растений с большей плоидностью радиопротекторный эффект выражен существенно ярче, объясняющий более низкий уровень спонтанного мутагенеза у подобных растений (рис. 5, стр. V; рис. 12, стр. X).
Заключение
На основании полученных и проанализированных результатов можно сделать следующие выводы:
-
Хроническое облучение в течение 50 лет приводит к достоверному повышению уровня мутационного процесса в популяциях многолетних растений: Achyrophorus maculatus и Plantago media. В то же время, в популяциях Plantago lanceolata аналогичный эффект отмечен на уровне тенденции.
-
Радиорезистентность высших растений на примере родственных видов подорожника зависит от их плоидности: вид с 24 хромосомами (P. media) оказывается более радиорезистентным по сравнению с видом с 12 хромосомами (P. lanceolata).
-
Впервые на высших растениях показана повышенная эффективность работы антиоксидантных систем у полиплоидных форм, вероятно, объясняющаяся их большей неспецифической устойчивостью.
-
В обеих популяциях (контрольной и опытной) A. maculatus в вариантах с часовым интервалом между фракциями радиационный эффект подчиняется принципу аддитивности, в то же время, при суточном интервале между фракциями индуцируется высоко достоверный радиопротекторный эффект, особенно ярко проявляющийся в опытной популяции.
-
Радиопротекторные механизмы хронического и предварительного низкоинтенсивного облучения схожи, и основными из них являются: а) активация репарационных систем; б) отбор наиболее радиорезистентных фенотипов и гамет с оптимальным геномом; а также в) активация антиоксидантных систем растений, длительное время обитающих в условиях хронического низкоинтенсивного облучения.
Список использованной литературы
-
Lane J.K.. X-ray fractionation and chromosome breakage.//Heredity, v. 5, 1951, p. 1-35.
-
Абрамов В.И., Кальченко В.А. и др. Цитогенетические эффекты в популяциях растении, произрастающих на Восточно-Уральском радиоактивном следе (ВУРСе).// Международная конференция «Генетические последствия чрезвычайных радиационных ситуаций», М., 10-13 июня 2002 г. М., РУДН, 2002: 5.
-
Абрамов В.И., Шевченко В.А.. Генетические последствия хронического действия ионизирующих излучений на популяции.//Радиационный мутагенез и его роль в эволюции и селекции. М., «Наука», 1987: 83.
-
Абрамов В.И.. Влияние хронического облучения на природные популяции растений. Автореферат диссертации на соискание ученой степени кандидата биологических наук. М., 1985.
-
Алексахин Р.М., Криволуцкий Д.А., Соколов В.Е.. Организация научных исследований по радиоэкологии на Восточно-уральском радиоактивном следе. //Экологические последствия радиоактивного загрязнения на Южном Урале. М., «Наука», 1993: 6.
-
Алексеев В.Н. Количественный анализ. 4-е издание, переработанное, М., «Химия», 1972: 504 стр.
-
Гераськин С.А.. Цитогенетические последствия облучения растений в низких дозах. //Международная конференция «Генетические последствия чрезвычайных радиационных ситуаций», М., 10-13 июня 2002 г. М., РУДН, 2002: 33.
-
Гилева Э.А.. Хромосомная нестабильность у грызунов с территории ВУРСа: межвидовые сравнения.// Международная конференция «Генетические последствия чрезвычайных радиационных ситуаций», М., 10-13 июня 2002 г. М., РУДН, 2002: 33.
-
Кузин А.М.. Методология структурно-метаболической теории в радиобиологии: клетка как динамическая система. М, РУДН, 2004: 56.
-
Куликов Н.В., Тимофеева Н.А., Альшиц Л.К. Действие предварительного облучения на последующую радиочувствительность предличинок линя (Tinca tinca L.).// Действие ионизирующих излучений на гидробионты и наземные растения. Свердловск, 1970: 3.
-
Ли Д.Э.. Действие радиации на живые клетки. М., Госатомиздат, 1963: 288
-
Митрофанов Ю.А., Олимпиенко Г.С.. Индуцированный мутационный процесс эукариот. М., «Наука», 1980: 264 стр.
-
Новиков В.С., Губанов И.А.. Школьный атлас-определитель высших растений. 2-е издание. М., «Просвещение», 1991: 239 стр.
-
Плохинский Н.А.. Алгоритмы биометрии. М., Изат. МГУ, 1980: 150 стр.
-
Радиационное наследство Советского ядерного комплекса, Аналитический обзор, Редакторы: Егоров Н.Н. и др. NASA-EARTHSCAN, Лондон: Earhtscan Publications Ltd, 2000, 236 стр.
-
Расина Л.Н., Орехова Н.А.. Окислительно-восстановительный метаболизм как физиологическая детерминанта видовой радиорезистентности мелких млекопитающих на ВУРСе. //Международная конференция «Генетические последствия чрезвычайных радиационных ситуаций», М., 10-13 июня 2002 г. М., РУДН, 2002: 97.
-
Раушенбах Ю.О., Монастырский О.А.. Исследование адаптации животных к повышенному естественному фону радиации.//Влияние ионизирующих излучений на наследственность. М., «Наука», 1966: 165.
-
Рейвн П., Эверт Р., Айкхорн С., Современная ботаника. В 2 томах. «Мир» 1990.
-
Рубанович А.В.. Популяционные исследования растений, животных и человека в зонах радиационных аварий. Автореферат диссертации на соискание учёной степени доктора биологических наук. М., 2006: 64.
-
Серебряный А.М., Зоз Н.Н.. Стимулированная репопуляция как основа феноменов антимутагенеза и адаптивного ответа у растений//Генетика. 2002. Т. 38. № 3. С.340-346.
-
Тимофеева-Ресовская Е.А., Тимофеев-Ресовский Н.В.. Влияние разных доз γ-лучей 60Со на ряску и элодею.//Влияние ионизирующих излучений на наследственность. М., «Наука», 1966: 253.
-
Турова Н.Я. Справочные таблицы по неорганической химии. Л., «Химия», 1977: 20.
-
Урбах В.Ю.. Биометрические методы. М., «Наука», 1964.
-
Шевченко В.А., Абрамов В.И., Печкуренков В.Л.. Генетические исследования на Восточно-Уральском радиоактивном следе.//Экологические последствия радиоактивного загрязнения на Южном Урале. М., «Наука», 1993: 258.
-
Ярмоненко С.П.. Вайсон А.А.. Радиобиология человека и животных. М., «Высшая школа», 2004: 543 стр.
Приложения
Рисунок 1. Объекты исследования
Рисунок 2. Восточно-Уральский радиоактивный след (ВУРС)