183448 (599252), страница 2
Текст из файла (страница 2)
Статистическое оценивание значимости влияния факторов x1 , x2 и взаимодействия x1x2 выполняются по F-критерию Фишера, для чего формируются следующие F-отношения:
,
,
.
Фактор x1 или x2 , или взаимодействие x1x2 признаются незначимым, если соответствующее F-отношение оказывается меньше критического, выбранного из таблиц для принятого уровня значимости и числа степеней свободы сравниваемых дисперсий.
Для того, чтобы сделать вывод о том, влияют ли на исследуемые показатели качественные факторы, выдвигают следующие гипотезы:
H0: , т.е средние значения по всем столбцам равны фактор столбца не оказывает влияния на исследуемый показатель.
H1: , , т.е средние значения по всем столбцам не равны фактор столбца оказывает существенное влияние на исследуемый показатель.
H0: , т.е средние значения по всем строкам равны фактор строки не оказывает влияния на исследуемый показатель.
H1: , , т.е средние значения по всем строкам не равны фактор строки оказывает существенное влияние на исследуемый показатель.
H0: , т.е отклонение взаимодействия факторов равно нулю и взаимодействие не значимо..
H1: , фактор взаимодействия значим..
Если , то принимается нулевая гипотеза при соответствующем уровне значимости о том, что исследуемый фактор не оказывает существенного влияния на количественные данные.
Если , то нулевая гипотеза отвергается и принимается альтернативная при соответствующем уровне значимости. Исходя из этого, можно сделать вывод о том, что исследуемый фактор оказывает существенное влияние на количественные данные.
Результаты двухфакторного дисперсионного анализа представляются в виде табл.3.
Таблица 3. - Двухфакторный дисперсионный анализ при равном числе наблюдений в ячейках
Вид изменчивости | Сумма квадратов отклонений | Число степеней свободы | Оценка дисперсии | F – отношение |
От фактора x1 |
|
|
|
|
От фактора x2 |
|
|
|
|
От взаимо-действия x1x2 |
|
|
|
|
Остаточная (от ) |
|
|
| |
Общая |
|
|
|
m – число данных в строке (число повторов в ячейке), - число столбцов,
- число строк.
3. Дисперсионный анализ в системе MINITAB
Для проведения дисперсионного анализа в системе MINITAB необходимо выбрать из меню Stat > ANOVA.
Различные возможности проведения дисперсионного анализа представлены следующими командами.
Команда Oneway позволяет провести однофакторный дисперсионный анализ, если значения выходного и влияющего параметра записаны в двух столбцах.
Команда Oneway(Unstacked) позволяет провести однофакторный дисперсионный анализ, если значения выходного параметра разбито на группы и значения для каждой группы записаны в разных столбцах.
Команда Twoway позволяет провести двухфакторный анализ для сбалансированных данных (с одинаковым количеством значений в каждой ячейке).
Команда Balanced ANOVA позволяет провести многофакторный дисперсионный анализ для сбалансированных моделей с перекрестной и иерархической классификацией.
Команда General Linear Model позволяет провести многофакторный несбалансированный дисперсионный анализ для моделей с перекрестной и иерархической классификацией.
3.2.1. Однофакторный дисперсионный анализ
Для проведения однофакторного дисперсионного анализа необходимо подготовить данные в двух столбцах (в первом – входная переменная, качественная, во втором – выходная переменная), выбрать из меню Stat > ANOVA > Oneway и заполнить открывшееся диалоговое окно.
Диалоговое окно.
-
Отклик (Response) – выберите столбец, содержащий выходную (зависимую) переменную. Столбец должен содержать только числовые значения.
-
Фактор (Factor) – выберите столбец, содержащий качественную переменную, влияние которой исследуется. Фактор может иметь как числовые, так и символьные значения.
-
Сохранить остатки (Store Residuals), выбирается, если необходимо сохранить остатки для последующего анализа. Остатки сохраняются в свободном столбце.
-
Сохранить оценки (Store fits) Для однофакторного анализа оценки это средние значения для каждого уровня фактора.
-
Графики представляют данные в виде точечных и блочных диаграмм для каждой группы с отмеченным средним значением.
Пример 1
Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены следующей таблицей.
Таблица 4.
Исходные данные
Field | Owner | d |
Пищевая | Частн | 31 |
Пищевая | Частн | 49 |
Пищевая | Частн | 37 |
Пищевая | Госуд | 47 |
Пищевая | Госуд | 57 |
Пищевая | Госуд | 53 |
Машиностр | Госуд | 43 |
Машиностр | Госуд | 59 |
Машиностр | Госуд | 56 |
Машиностр | Частн | 47 |
Машиностр | Частн | 51 |
Машиностр | Частн | 53 |
Определим зависимость износа оборудования от отрасли промышленности.
В этом случае в диалоговом окне указываются следующие значения
Response: d
Factor: field
Результаты дисперсионного анализа включают таблицу анализа дисперсии, таблицу средних значений уровней факторов, индивидуальные доверительные интервалы для каждого уровня и общее стандартное отклонение. На рис.1 представлен листинг результатов вычислений. На рисунке используются следующие обозначения:
DF – число степеней свободы,
SS - сумма квадратов,
MS – средний квадрат,
F - отношение Фишера,
P - уровень значимости для вычисленного F,
Level – уровень фактора,
Mean – среднее значение,
StDev – стандартное отклонение.
One-Way Analysis of Variance
Analysis of Variance for d
Source DF SS MS F P
field 1 102.1 102.1 1.55 0.241
Error 10 656.8 65.7
Total 11 758.9
Individual 95% CIs For Mean
Based on Pooled StDev
Level N Mean StDev -------+---------+---------+---------
Пищевая 6 45.667 9.852 (-----------*-----------)
Машиност 6 51.500 5.857 (-----------*-----------)
-------+---------+---------+---------
Pooled StDev = 8.105 42.0 48.0 54.0
Рис.1 Листинг результатов вычислений для однофакторной модели
Если значения выходной переменной разбито на группы и каждая группа записана в отдельном столбце, то для проведения однофакторного дисперсионного анализа необходимо выбрать из меню Stat > ANOVA > Oneway [Unstacked] и заполнить следующее диалоговое окно.
Диалоговое окно
-
Отклик в нескольких столбцах Responses [in separate columns] - выберите столбцы, содержащие выходную (зависимую) переменную. Столбцы должны содержать только числовые значения. Система не требует, чтобы в каждом столбце было одинаковое число наблюдений.
-
Графики представляют данные в виде точечных и блочных диаграмм для каждой группы с отмеченным средним значением.
Пример 2
Пусть данные о проценте износа оборудования для 12 предприятий двух отраслей промышленности (пищевая - field1, машиностроение - field2) представлены в табл.5.
Таблица 5.
Исходные данные
Field1 | Field2 |
31 | 59 |
49 | 56 |
37 | 47 |
47 | 51 |
57 | 53 |
53 | |
43 |
В этом случае в диалоговом окне указываются следующие значения.
Responses [in separate columns]: field1 field2
Результатом дисперсионного анализа будет таблица представленная на рис.2.
One-Way Analysis of Variance
Analysis of Variance
Source DF SS MS F P
Factor 1 182.7 182.7 3.17 0.105
Error 10 576.2 57.6
Total 11 758.9
Individual 95% CIs For Mean
Based on Pooled StDev
Level N Mean StDev ------+---------+---------+---------+
field1 7 45.286 9.050 (---------*----------)
field2 5 53.200 4.604 (------------*-----------)
------+---------+---------+---------+
Pooled StDev = 7.591 42.0 48.0 54.0 60.0
Рис.2 Листинг результатов вычислений
Из полученных результатов видно, что P> (
=0.05), значит принимается нулевая гипотеза и мы можем сделать вывод о том, что влияние фактора отрасли на уровень износа оборудования незначимо.
Если в опции <Graphs> указать Dotplots of data:, то будет построен следующий график (чертой отмечено среднее значение для группы).
Рис.3 Представление экспериментальных данных
3.2.2. Двухфакторный дисперсионный анализ
Для проведения двухфакторного дисперсионного анализа необходимо подготовить данные, выбрать из меню Stat > ANOVA > Balanced ANOVA и заполнить открывшееся диалоговое окно.
Эта функция позволяет проводить, как одномерный, так и многомерный анализ дисперсии. Факторы могут быть связаны как перекрестно, так и иерархически, они могут быть детерминированными и случайными, однако данные должны быть сбалансированы. Это значит, что для каждого уровня A должны быть одинаковые уровни фактора B, и в том же количестве.
Диалоговое окно.
-
Отклики (Responses) – выберите столбцы, содержащие выходные (зависимые) переменные. Система позволяет анализировать до 50 выходных переменных.
-
Модель (Model) – укажите переменные или их комбинацию, которые включаются в модель.
-
Случайные факторы (Random Factors) – укажите столбец, содержащий случайную переменную.
Пример 3
Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены в табл.1. Определим, как влияют отрасль промышленности, форма собственности и их взаимодействие на процент износа оборудование. Для этого выберем из меню Stat > ANOVA > Balanced ANOVA и заполним диалоговое окно следующим образом