159008 (599044), страница 9

Файл №599044 159008 (Философия и методология науки) 9 страница159008 (599044) страница 92016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1925 г. швейцарский физик-теоретик В. Пау­ли (1900-1958) сформулировал принцип запрета: ни в атоме, ни в молекуле не может быть двух электронов, находящихся в одинаковом состоянии.

В 1926 г. австрийский физик-теоретик Э. Шредингер (1887-1961) вывел основное уравнение волновой механики, а в 1927 г. немецкий физик В. [ейзенберг (1901-1976) - прин­цип неопределенности, утверждавший: значения координат и импульсов микрочастиц не могут быть названы одновремен­но и с высокой степенью точности.

В 1929 г. английский физик П. Дирак (1902-1984) заложил основы квантовой электродинамики и квантовой теории гра­витации, разработал релятивистскую теорию движения элек­трона, на основе которой предсказал (1931) существование позитрона - первой античастицы. Античастицами назвали частицы, подобные своему двойнику, но отличающиеся от него электрическим зарядом, магнитным моментом и др. В 1932 г. американский физик К. Андерсон (р. 1905) открыл по­зитрон в космических лучах.

В 1934 г. французские физики Ирен (1897-1956) и Фриде-рикЖолио-Кюри (1900-1958) открыли искусственную радио­активность, а в 1932 г. английский физик Дж. Чедвик (1891-1974) - нейтрон. Создание ускорителей заряженных частиц способствовало развитию ядерной физики, была выявлена не­элементарность элементарных частиц. Но поистине революци­онный переворот в физической картине мира совершил вели­кий физик-теоретик А. Эйнштейн (1879-1955), создавший спе­циальную (1905) и общую (1916) теорию относительности.

Как мы помним из предыдущего раздела, в механике Нью­тона существуют две абсолютные величины - пространство и время. Пространство неизменно и не связано с материей. Вре­мя - абсолютно и никак не связано ни с пространством, ни с материей. Эйнштейн отвергает эти положения, считая, что пространство и время органически связаны с материей и меж­ду собой. Тем самым задачей теории относительности стано­вится определение законов четырехмерного пространства, где четвертая координата - время. Эйнштейн, приступая к разра­ботке своей теории, принял в качестве исходных два положения; скорость света в вакууме неизменна и одинакова во всех сис­темах, движущихся прямолинейно и равномерно друг относи­тельно друга, и для всех инерциальных систем все законы природы одинаковы, а понятие абсолютной скорости теряет значение, так как нет возможности ее обнаружить.

Кроме того, он построил математическую теорию броунов­ского движения, разработал квантовую концепцию света, а за открытие фотоэффекта в 1921 г. ему была присуждена Но­белевская премия, дал физическое истолкование геометрии Н. Н. Лобачевского (1792-1856).

Говоря об открытии специальной теории относительности, нельзя не вспомнить нидерландского физика А. Лоренца (1853-1928), который в 1892 г. вывел уравнение (получившее название «преобразования Лоренца»), дающее возможность установить, что при переходе от одной инерциальной систе­ме к другой могут изменяться значения времени и размеры движущегося тела в направлении скорости движения. А круп­нейший французский математик и физик Анри Пуанкаре (1854-1912), который и ввел название «преобразование Лорен­ца», первым начал пользоваться термином «принцип относи­тельности», независимо от Эйнштейна развил математическую сторону этого принципа и практически одновременно с ним показал неразрывную связь между энергией и массой.

Если в классической науке универсальным способом задания объектов теории были операции абстракции и непосредственной генерализации наличного эмпирического материала, то в не­классической введение объектов осуществляется на пути математизации, которая выступает основным индикатором идей в науке, приводящих к созданию новых ее разделов и теорий. Ма­тематизация ведет к повышению уровня абстракции теоретичес­кого знания, что влечет за собой потерю наглядности.

Переход от классической науки к неклассической характе­ризует та революционная ситуация, которая заключается во вхождении субъекта познания в «тело» знания в качестве его необходимого компонента. Изменяется понимание предмета знания: им стала теперь не реальность «в чистом виде», как она фиксируется живым созерцанием, а некоторый ее срез, заданный через призму принятых теоретических и операци­онных средств и способов ее освоения субъектом. Поскольку о многих характеристиках объекта невозможно говорить без учета средств их выявления, постольку порождается специфи­ческий объект науки, за пределами которого нет смысла ис­кать подлинный его прототип. Выявление относительности объекта к научно-исследовательской деятельности повлекло за собой то, что наука стала ориентироваться не на изучение вещей как неизменных, а на изучение тех условий, попадая в которые они ведут себя тем или иным образом,

Так как исследователь фиксирует только конкретные ре­зультаты взаимодействия объекта с прибором, то это по­рождает некоторый «разброс» в конечных результатах ис­следования. Отсюда вытекает правомерность и равноправ­ность различных видов описания объекта, построение его теоретических конструктов.

Научный факт перестал быть проверяющим. Теперь он ре­ализуется в пакете с иными внутритеоретическими способа­ми апробации знаний: принцип соответствия, выявление внутреннего и когерентного совершенства теории. Факт сви­детельствует, что теоретическое предположение оправдано для определенных условий и может быть реализовано в некоторых ситуациях. Принцип экспериментальной проверяемости на­деляется чертами фундаментальности, т. е. имеет место не «интуитивная очевидность», а «уместная адаптированность».

Концепция монофакторного эксперимента заменилась полифакторной: отказ от изоляции предмета от окружающе­го воздействия якобы для «чистоты рассмотрения», призна­ние зависимости определенности свойств предмета от дина­мичности и комплексности его функционирования в позна­вательной ситуации, динамизация представлений о сущности объекта - переход от исследования равновесных структурных организаций к анализу неравновесных, нестационарных структур, ведущих себя как открытые системы. Это ориенти­рует исследователя на изучение объекта как средоточия ком­плексных обратных связей, возникающих как результирую­щая действий различных агентов и контрагентов.

На основе достижений физики развивается химия, особен­но в области строения вещества. Развитие квантовой механи­ки позволило установить природу химической связи, под пос­ледней понимается взаимодействие атомов, обусловливающее их соединение в молекулы и кристаллы. Создаются такие хи­мические дисциплины, как физикохимия, стереохимия, хи­мия комплексных соединений, начинается разработка мето­дов органического синтеза.

В области биологии русским физиологом растений и микробиологом Д. И. Ивановским (1864-1920) был открыт вирус и положено начало вирусологии. Получает дальнейшее развитие генетика, в основе которой лежат законы Менделя и хромосомная теория наследственности американского биолога Т. Ханта (1866-1945). Хромосомы - структурные элементы ядра клетки, содержащие дезоксирибонуклеиновую кислоту (ДНК), которая является носителем наслед­ственной информации организма. При делении ДНК точно воспроизводится, обеспечивая передачу наследственных признаков от поколения к поколению. Американский био­химик Дж. Уотсон (р. 1928) и английский биофизик Ф. Крик (р. 1916) в 1953 г. создали модель структуры ДНК, что положи­ло начало молекулярной генетике. Датским биологом В. Йогансоном (1857-1927) было введено понятие «ген» - единица наследственного материала, отвечающая за передачу не­которого наследуемого признака.

Важнейшим событием развития генетики было открытие мутаций - внезапно возникающих изменений в наследственной системе организмов. Хотя явление мутаций было известно уже давно: в 1925 г. отечественный микробиолог Г.А. Натсон (1867-1940) установил действие радиоизлучения на наследственную изменчивость у грибов, в 1927 г. американский генетик Г Д. Меллер (1890-1967) обнаружил мутагенное действие рентгеновских лучей на дрозофил. Систематическое изучение мутаций было предпринято голландским ученым Хугоде Фризом (1842-1935), установившим, что индуцированные мутации могут возникать в результате радиоактивного облучения организмов или под воз­действием некоторых химических веществ.

В результате развития генетики в этот период было выяс­нено, что изменчивость растительного или животного орга­низма может быть достигнуто двумя способами: либо непос­редственным воздействием внешней среды без изменения на­следственного аппарата организма, либо стимулированием мутаций, приводящих к изменениям наследственного аппара­та (генов, хромосом).

Не менее значительные достижения были отмечены в об­ласти астрономии. Напомним, что под Вселенной (Метага­лактикой) понимается доступная наблюдению и исследова­нию часть мира. Здесь существуют большие скопления (100- 200 млрд.) звезд - галактики, в одну из которых - Млечный Путь - входит Солнечная система. Наша Галактика состоит из 150 млрд. звезд (светящихся плазменных шаров), среди ко­торых Солнце, галактические туманности, космические лучи, магнитные поля, излучения. Солнечная система находится да­леко от ядра Галактики, на ее периферии, на расстоянии око­ло 30 световых лет. Возраст Солнечной системы около 5 млрд. лет. На основании «эффекта Доплера» (австрийский физик и астроном) было установлено, что Вселенная расширяется с очень высокой скоростью.

В 1922 г. математик и геофизик А. А. Фрид­ман (1888-1925) нашел решение уравнений общей теории от­носительности для замкнутой нестационарной расширяю­щейся Вселенной, ставшее математическим фундаментом большинства современных космогонических теорий.

Астрономы и астрофизики пришли к выводу, что Вселен­ная находится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном из водорода и гелия, под действием сил гравитации различаются по «возрасту». Причем образование новых звезд происходит и сейчас.

Сжимаясь под действием гравитационных сил, звезда на­гревается, внутри нее растет давление. При достижении опре­деленной критической температуры начинается термоядерная реакция, сопровождающаяся выделением огромного количе­ства тепла. На следующей стадии под действием гравитаци­онных сил наступает момент равновесия. В этом состоянии звезда может существовать довольно долго. Так, например, Солнце будет находиться в этом состоянии 13 млрд лет, око­ло 5 из них уже прошло. Но потом наступает момент, когда во­дород, находящийся в центре звезды, где происходит термо­ядерная реакция, будет израсходован. Температура внутри звезды будет уменьшаться, будет снижаться давление и иссяк­нут возможности сопротивляться гравитации. Ядро звезды, состоящее теперь уже только из гелия, начинает сжиматься, образуя плотную, горячую область. Теперь термоядерная ре­акция будет протекать на периферии звезды, где еще сохра­нился водород. В это время размер звезды и ее светимость уве­личиваются. В результате она превращается в красного гиган­та. Температура гелиевого ядра возрастает, и начинается новая ядерная реакция превращения гелия в углерод.

В зависимости массы звезды от массы Солнца после всего этого цикла она превращается либо в белого карлика - за­ключительный этап эволюции звезд, либо наступает гравита­ционный коллапс - вспышка сверхновой звезды, либо образуется черная дыра - сфера, из которой не могут выйти ни частицы, ни какое-либо излучение ввиду того, что очень ве­лико поле тяготения внутри нее.

В 1963 г. открыты квазары - астрономические тела, нахо­дящиеся вне пределов Галактики. В 1965 г. американские ас­трономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнару­жили фоновое радиоизлучение. Как метко назвал его извест­ный астроном и астрофизик И. С. Шкловский (1916-1985) - реликтовое излучение, не возникающее во Вселенной в насто­ящее время. Расширение Вселенной и реликтовое излучение являются вполне убедительными доводами в пользу стандарт­ной модели происхождения Вселенной, или теории «большо­го взрыва». В 1967 г. были открыты пульсары - космические тела, являющиеся источниками радиоизлучения. В 1903 г. ученным в работе «Исследование мировых пространств реактивные приборами» заложены начала теории космических полетов. В ней сформулированы основные принципы баллистики ракет, предложена схема жидкостного реактивного двигателя, а также принцип конструирования ракет - идеи, которые несколько позднее были востребованы и творчески освоены последователями Циолковского. Созда­ется наука, нацеленная на изучение и освоение космическо­го пространства - космонавтика. Ознаменовался этот пери­од развития науки созданием кибернетики - науки об управ­лении, связи и переработке информации, теории систем. Интенсивное развитие промышленного производства, косми­ческих исследований стимулирует дальнейшее совершенство­вание технических наук.

Характерное для классического этапа стремление к абсолю­тизации методов естествознания, выразившееся в попытках при­менения их в социально-гуманитарном познании, все больше и больше выявляло свою ограниченность и односторонность. На­метилась тенденция формирования новой исследовательской парадигмы, в основании которой лежит представление об осо­бом статусе социально-гуманитарных наук.

Как реакция на кризис механистического естествознания и как оппозиция классическому рационализму в конце XX в. возникает направление, представленное В. Дильтеем, Ф. Ниц­ше, Г. Зиммелем, А. Бергсоном, О. Шпенглером и др., - «фи­лософия жизни». Здесь жизнь понимается как первичная ре­альность, целостный органический процесс, для познания которой неприемлемы методы научного познания, а возмож­ны лишь внерациональные способы - интуиция, понимание, вживание, вчувствование и др.

Представители баденской школы неокантианства В. Виндельбанд (1848-1915) и Г. Риккерт (1863-1936) считали, что «науки о духе» и естественные науки прежде всего различают­ся по методу. Первые (идеографические науки) описывают неповторимые, индивидуальные события, процессы, ситуа­ции; вторые (номотетические), абстрагируясь от несуществен­ного, индивидуального, выявляют общее, регулярное, законо­мерное в изучаемых явлениях.

Характеристики

Тип файла
Документ
Размер
4 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее