151506 (598939), страница 4
Текст из файла (страница 4)
При β-розпаді ядро випромінює електрони (β–-частинку) завдяки перетворенню одного нейтрона ядра у протонза схемою:
n → p + β– +
– антинейтрино. υ-нейтрино і
-антинейтрино – елементарні частки, які не мають заряду і не характеризуються масою спокою, але відрізняються одна від одної спіном. При β-розпаді заряд ядра збільшується на одиницю, а масове число не змінюється, тобто утворюється ізотоп елемента з порядковим номером на одиницю більше, ніж у вихідного. Наприклад:
→
+ β– +
Для ядер, у яких число нейтронів менше за число протонів, характерний позитронний розпад, тобто розпад з виділенням (β+) позитрона. Позитрон – елементарна частка з масою електрона і позитивним елементарним зарядом. При β+-розпаді один протон перетворюється в нейтрон за схемою: р → n + β+ +
. При цьому розпаді заряд ядра зменшується на одиницю, а масове число не змінюється:
→
+ β+ + υ
Електронний захват полягає в тому, що електрон з найближчого до ядра шару захвачується ядром і при цьому один з протонів ядра перетворюється в нейтрон: р +
→ n. Наприклад:
+
→
+ γ.
Для важких елементів крім α- і β-розпаду можливий самовільний поділ ядер. Це явище характерне для трансуранових елементів. Ізотопи 232Th, 238U і 235Cl є родопочатковими природних радіоактивних рядів важких елементів. Закінчується розпад утворенням складних ізотопів свинцю. Ряд перетворень 238U:
Явище штучної радіоактивності було відкрите у 1932 році Ірен і Фредеріком Кюрі. Під час ядерних реакцій відбувається взаємодія відповідних часток (n, p, α) з ядрами хімічних елементів
Для розвитку ядерної хімії велике значення мало відкриття у 1939 р. поділу ядер урану тепловими нейтронами:
Ядро розщеплюється на два нові радіоактивні ядра з різними масами. Поділ ядра супроводжується виділенням великої кількості енергії. При цьому замість одного нейтрона утворюються 2,3 нові, які можуть спричинювати подальший поділ ядер. На цьому грунтується дія атомної бомби. На керованих реакціях поділу ядер урану, плутонію грунтується дія ядерних реакторів.
Термоядерні реакції – вид ядерних реакцій, що відбуваються при високих температурах:
Квантово-механічне пояснення будови молекул
Вчення про хімічний зв’язок – центральна проблема сучасної хімії. Незнаючи природу взаємодії атомів у речовині не можна зрозуміти механізм утворення хімічних сполук, їх склад, будову і реакційну здатність.
Сукупність хімічно зв’язаних атомів – це складна система атомних ядер і електронів. Певному просторовому положенню атомних ядер відповідає певний розподіл електронної густини. Описати хімічний зв’язок у речовині означає встановити, як саме розподіляється електронна густина. Залежно від характеру розподілу електронної густини в молекулах речовини розрізняють такі основні типи хімічного зв’язку: повалентний, іонний і металічний. Для переважної більшості речовин характерне накладання різних типів зв’язків.
Хімічний зв’язок між атомами в основному здійснюється так званими валентними електронами: у-, s- і p-елементів валентними є електрони зовнішнього енергетичного рівня, а у d-елементів – електрони s-стану останнього і d-стану передостаннього енергетичних рівнів.
Деякі параметри молекули. Інформацію про будову речовини можна одержати, досліджуючи її фізичні і хімічні властивості. Зокрема, за допомогою фізичних методів дослідження визначають основні параметри молекули – міжядерні віддалі, валентні кути і геометрію молекул. Довжиною зв’язку називається віддаль між ядрами двох хімічно зв’язаних атомів, які урівноважені силами притягання та відштовхування, а внутрішня енергія молекули при цьому мінімальна.
Встановлено, що довжина зв’язку зменшується із збільшенням порядку або кратності зв’язку. Наприклад (1Å = 1·10–8 см):
d(C–C) = 1,541 0,003Å;
d(C=C) = 1,337 0,006Å;
d(CC) = 1,204 0,002Å.
Оцінити довжину хімічного зв’язку в молекулі АВ можна виходячи з міжядерних віддалей в простих речовинах А2 і В2:
А2 + В2 → 2АВ; dA–B =
Якщо значення довжини зв’язків залишаються постійними в ряду молекул або ковалентно побудованих твердих сполук і якщо довжина ковалентного зв’язку А–В рівна середньому значенню довжин зв’язків А–А і В–В, то атомам можна приписати ковалентні радіуси, і тоді довжина хімічного зв’язку буде рівна сумі ковалентних радіусів відповідних елементів. Так, наприклад, у всіх насичених сполуках С–С = 1,54–1,58Å; в ароматичних С–С = 1,39–1,42Å
Валентні кути. Схематично валентні кути можна представити прямими лініями, що з’єднують ядра атомів у молекулі. Валентні кути залежать від природи атомів і характеру зв’язку. Якщо двохатомні молекули А2 або АВ можуть мати тільки лінійну конфігурацію, то уже трьохатомна молекула може бути як лінійною В–А–В, так і кутовою В А В або замкненою В А В. До І типу (лінійних) відносяться BeCl2, ZnBr2, CdI2, CO2. До ІІ типу – H2O, H2S. АВ3 – плоска пірамідальна або Т-подібна: BCl3, NH3, ClF3. 4-атомні молекули: С2Н2 – лінійна, СН4 – тетраедрична.
Енергія хімічного зв’язку – одна з основних характеристик хімічного зв’язку. Вона визначає міцність зв’язку.
Мірою міцності хімічного зв’язку може служити як кількість енергії, що витрачається на її розрив, так і величина, яка при сумуванні по всіх зв’язках дає енергію утворення молекули з атомів (середня енергія зв’язку). Енергія розриву – додатня.
Енергія зв’язку дорівнює енергії розриву, але протилежна за знаком. Якщо склад багатоатомної молекули виражається формулою АВn, то
Езв’язку =
Еутворення молекули з атомів
Наприклад:
= 397 ккал/моль; Е(С–Н) =
= 99 ккал
Але якщо допустити, що проходить процес послідовного відриву атома В від молекули АВn, то при такій дисоціації проходить зміна ядерної і електронної конфігурації системи і як наслідок – зміна енергії взаємодії атомів, що входять у молекулу. Якщо в СН4 валентний кут дорівнює 109,5, то в СН3 – 120, майже плоский. Тому енергія послідовного відриву кожного з атомів в В в молекулі АВn буде неодинакова. Тут можливі різні випадки. Якщо відрив одного атома приводить до послаблення інших зв’язків, тоді енергія послідовного відриву зменшується. Наприклад, у Н2О відрив 1-го атому Н: Е = 118 ккал/моль і другого – 102 ккал/моль2. Якщо відрив одного атома приводить до зміцнення хімічних зв’язків, то енергія відриву наступних атомів зростає. Наприклад, в AlCl3 – E1 = 911; Е2 = 95; Е3 = 119 ккал/моль. Для СН4: Е = 102, 88, 124, 80;
Есер. =
= 99 ккал/моль
Енергія утворення молекули може бути вирахована також як сума енергій хімічних зв’язків:
С5Н12 (Н3С–СН2–СН2–СН2–СН3)
= 4ЕС–С + 12ЕС–Н
Закономірна зміна енергії в однотипних зв’язках дозволяє оцінити енергію зв’язку і в аналогічних молекулах.
Для багатоелектронних структур, як і для багатоелектронних атомів, точний розв’язок рівняння Шредінгера не знайдено і у зв’язку з цим використовується наближений розв’язок.
Наближений розв’язок рівняння Шредінгера на прикладі утворення молекули Н2 вперше виконано в роботі В. Гейтлера і Ф. Лондона в 1927 р. Гейтлер і Лондон при побудові хвильової функції електронів молекули водню виходили з хвильової функції атома водню в 1s-стані. Якщо два атоми водню a і b знаходяться на віддалі, при якій вони один на одного не впливають (тобто стан одного атома не залежить від стану другого), хвильові функції обох атомів виражаються добутком функцій, що описують кожен атом:
= а(1) · b(2); = b(1) · a (2)
Обидва вирази рівнозначні, так як електрони атомів зліченні, їх не можна розрізнити.
При зближенні атомів a і b на такі віддалі, коли вони впливають один на одного, виникають сили притягання між ядром відштовхуванням. Крива залежності енергії системи проходить через мінімум при r0 = 0,074 нм, що відповідає рівновеликій довжині зв’язку у молекулі Н2.
Якщо в атомі спіни паралельні (антисиметрична -функція), зближення атомів приводить до зростання енергії системи (мал. , крива 2):
Е =
де І – кутовий інтеграл характеризує електростатичну взаємодію електронів і ядер між собою;
K– обмінний інтеграл визначає зменшення енергії системи, що обумовлена рухом кожного електрона біля обох ядер;
S – інтеграл перекривання; показує наскільки сильно перекриваються електронні орбіталі атомів водню.
Утворені молекули водню крім зміни енергії супроводжуються зміною електронної густини.
Якщо електронні хмари двох атомів водню не перекриваються, то довжина зв’язку рівна ra(H) = 0,53, r0 = 0,53 · 2 = 1,06 Å. У молекулі Н2 r0 = 0,74 Å. Це свідчить про те, що при утворенні ковалентного зв’язку відбувається перекривання електронних хмар атомів водню:
Для систем з двома і більшим числом електронів застосовують наближені методи обчислення хвильової функції, або наближено визначають розподіл електронної густини в молекулі. Найбільш поширеними є два методи: метод валентних зв’язків (ВЗ) і метод молекулярних орбіталей (МО). У розвитку першого методу особлива заслуга належить В. Гейтлеру і Ф. Лондону, Дж. Слетеру і Л. Полінгу; у розвитку другого методу – Р. Маллікену і Ф. Гунду.
Метод валентних зв’язків виходить з положення, що кожна пара атомів у молекулі утримується разом за допомогою електронних пар, тобто хімічний зв’язок локалізований між двома атомами, він утворюється внаслідок перекривання атомних електронних хмар. У місці перекривання електронних хмар, тобто в просторі між атомами, електронна густина максимальна. Це означає, що імовірність перебування електронів у просторі між ядрами більша, ніж у інших місцях молекули завдяки цьому зростають сили притягання між позитивними ядрами і негативними зарядами електронів, що приводить до утворення молекули.















