144951 (598821), страница 13
Текст из файла (страница 13)
Значения этих величин соответствуют величинам
и
теоретического распределения.
Уравнение соответствует функции нормального распределения при m(x)
0 (рис. 2, а). Если совместить ось ординат с точкой m, т.е. m(x)=0 (рис.2,б), и принять
, то знаки нормального распределения описываются зависимостью:
Для оценки рассеяния обычно пользуются величиной . Чем меньше
, тем меньше рассеяние, т.е. большинство наблюдений мало отличается друг от друга (рис.3). С увеличением
рассеяние возрастает, вероятность появления больших погрешностей увеличивается, а максимум кривой распределения (ордината), равная
уменьшается. Поэтому величину
при
или
называют мерой точности.
Таким образом, чем меньше , тем больше сходимость результатов измерений, а ряд измерений более точен, среднеквадратичное отклонение определяет закон распределения. Отклонения +
и -
соответствуют точкам перегиба кривой (заштрихованная площадь на рис. 3). В общем случае для предела
вероятность того, что событие хi попадает в данный предел, вычисляется по распределению Лапласа:
При анализе многих случайных дискретных процессов пользуются распределением Пуассона. Так, вероятность появления числа событий х=1,2,3,… в единицу времени определяется законом Пуассона (рис.4) и подсчитывается по формуле:
Где х – число событий за данный отрезок времени t;
- плотность, т.е. среднее число событий за единицу времени;
- число событий за время t,
= m
Распределение Пуассона относят к редким событиям, т.е. р(х) – вероятность того, что событие в период какого-то испытания произойдет х раз при очень большом числе измерений m. Для закона Пуассона дисперсия равна математическому ожиданию числа наступления события за время t, т.е.
Для исследования количественных характеристик некоторых процессов можно применять показательный закон распределения (рис. 5). Плотность вероятности показательного закона выражается зависимостью . Здесь плотность является величиной, обратной математическому ожиданию
, кроме того
.
В различных областях исследований широко применяется закон распределения Вейбулла (рис.6). , где n,
- параметры закона; х – аргумент (чаще принимаемый как время).
Исследуя процессы, связанные с постепенным снижением параметров (ухудшением свойств материалов во времени, деградация конструкций, процессы старения, износовые отказы в машинах и др.), применяют закон - распределения (рис. 7).
; где
- параметры. Если
= 1,
- функция превращается в показательный закон.
При исследовании многих процессов, связанных с установлением расчетных характеристик, материалов и т.п., используют закон распределения Пирсона (рис.8), чаще всего представляемый в виде:
где а – максимальная ордината; d,b – соответственно расстояния от максимальной ординаты до центра распределения С и начала координат 0.
Кроме приведенных выше применяют и другие виды распределений. В исследованиях часто возникает необходимость выявления факторов или их комбинаций, существенно влияющих на исследуемый процесс, так как при измерении какой-либо величины результаты обычно зависят от многих факторов. Практика показывает, что основными факторами, как правило, являются техническое состояние прибора и внимание оператора. Для установления основных факторов и их влияния на исследуемый процесс используется дисперсионный одно- и многофакторный анализ. Суть однофакторного дисперсионного анализа рассмотрим на примере. Пусть необходимо проверить степень точности группы m приборов и установить, являются ли их систематические ошибки одинаковыми, т.е. изучить влияние одного фактора – прибора на погрешность измерения. Каждым прибором выполнено n измерений одного и того же объекта, а всего nm измерений. Отдельное измерение хij, где i – номер прибора, имеющий значение от 1 до m; j - номер выполненного на этом приборе измерения, изменяющийся от 1 до n. Дисперсионный анализ допускает, что отклонения подчиняются нормальному закону распределения, в соответствии с которым вычисляют для каждой серии измерений среднеарифметическое значение и среднюю из показаний первого прибора и т.д. для каждого из ni измерений и mi приборов. В результате расчетов устанавливают величину Q1, называемую суммой квадратов отклонений между измерениями серий:
Она показывает степень расхождения в систематических погрешностях всех m приборов, т.е. характеризует рассеивание исследуемого фактора между приборами.
Здесь - среднеарифметическое для n измерений;
- среднеарифметическое для всех серий измерений, т.е. общее среднее значение.
Определяется также величина Q2
где хij - отдельное i-е измерение на j-ом приборе.
Величину Q2 называют суммой квадратов отклонений внутри серии. Она характеризует остаточное рассеивание случайных погрешностей одного прибора.
При таком анализе допускается, что центры нормальных распределений случайных величин равны, в связи с чем все mn измерения можно рассматривать как выборку из одной и той же нормальной совокупности. Чтобы убедиться в возможности такого допущения, вычисляют критерий:
Числитель и знаменатель представляют собой дисперсию для m и mn наблюдений. В зависимости от значений k1 = m-1 и k2 = m(n-1) числа степеней свободы и вероятности р составлены табличные значения Jт. Если J ≤ Jт то считается, что в данном примере все приборы имеют одинаковые систематические ошибки.
Дисперсионный анализ является многофакторным, если он имеет два фактора и более. Суть его принципиально не отличается от однофакторного, но существенно увеличивается количество расчетов.
Методы теории вероятностей и математической статистики часто применяют в теории надежности, широко используемой в различных отраслях науки и техники. Под надежностью понимают свойство изделия (объекта) выполнять заданные функции (сохранять установленные эксплутационные показатели) в течение требуемого периода времени. В теории надежности отказы рассматривают как случайные события. Для количественного описания отказов применяются математические модели – функции распределения вероятностей интервалов времени.
Основной задачей теории надежности является прогнозирование (предсказание с той или иной вероятностью) различных показателей безотказной работы (долговечности, срока службы и т.д.), что связано с нахождением вероятностей.
Для исследования сложных процессов вероятностного характера применяют метод Монте-Карло, с помощью которого отыскивается наилучшее решение из множества рассматриваемых вариантов. Результаты решения метода позволяют установить эмпирические зависимость исследуемых процессов. Математической основой метода является закон больших чисел: при большом числе статистических испытаний вероятность того, что среднеарифметическое значение случайной величины стремится к ее математическому ожиданию, равна 1, т.е.
где - любое малое положительное число.
Из этой формулы видно, что по мере увеличения числа испытаний n среднеарифметическое неограниченно (асимптотически) приближается к математическому ожиданию.
Для решения задач методом Монте-Карло необходимо иметь статистический ряд, знать закон его распределения, среднее значение , математическое ожидание
и среднеквадратичное отклонение. С помощью метода можно получить сколько угодно заданную точность решения.
V. Логистика
Логистика - наука о планировании, контроле и управлении транспортированием, складированием и др. материальными и нематериальными операциями, совершаемыми в процессе доведения сырья и материалов до промышленных предприятий; внутризаводской переработки сырья, материалов, полуфабрикатов; доведения готовой продукции до потребителя в соответствии е его требованиями а также передачи, обработки и хранения соответствующей информации. Логистика стремится максимально удовлетворить запросы потребителя с минимальными затратами для производителя. Глобальная цель логистики - сокращение цикла, уменьшение запасов.
На стадии производства - за счет синхронизации процессов; за счет определения потребности в материальных ресурсах; что требуется? когда? сколько?; за счет саморегулирования (пр-во идет в соответствии со спросом на ту или иную продукцию). Основная задача логистики - использование материалов, энергии, информации, персонала и средств производства. Предоставить потребителю продукцию в заданное время заданного качества в заданное место и за определенную цену.
Функции логистики:
1.Оперативные функции связаны с непосредственным управлением движением материальных ценностей в сфере снабжения, пр-ва и распределения (управление движением сырья и материалов, отдельных частей или запасов ГП).
2.Функции координации включают: выявление и анализ потребностей в материальных ресурсах различных фаз производства; анализ рынков, на каких действует предприятие, и прогнозирование развития потенциальных рынков; обработка данных, касающихся заказов и потребностей клиентуры. Перечисленные функции логистики заключаются в координации спроса и предложения товара.
Показатели логистики:
- время поставки;
- точность, верность, обязательность поставки;
- готовность к поставке;
- качество поставок - определяется долей заказов, выполненных без дефектов в соответствии со спецификацией;
- гибкость - готовность предприятия выполнить вносимые клиентом изменения;
- информация - способность предприятия выдавать запрашиваемые клиентом сведения на всех стадиях.
Принципы логистики.
1. Саморегулирование (сбалансированность производства).
2. Гибкость (возможность внесения изменений в график закупки материалов, изменение в сроках поставки).
3. Минимизация объемов запасов.
4. Моделирование движения продукции.
5. Компьютеризация (управление мат. потоками).
6. Надежность в обеспечении ресурсами.