144893 (598819), страница 5
Текст из файла (страница 5)
1/m ∑ Рi '+ ∑ Рi"= 0
Следовательно,
m = - ∑ Рi ' / ∑ Рi" (3.11)
Здесь суммирование проводится по всем периодам года.
б) при получении в п. 3.8 результата Рк > ΔР коэффициент m должен быть таким, чтобы выполнялось условие Рк =Δ Р. Тогда выражение (3.8) примет вид:
1/m ∑ Рi '+ ∑ Рi"= Δ Р
Следовательно,
m = ∑ Рi ' / ( Δ Р - ∑ Рi") (3.12)
В данном случае суммирование проводится по тем периодам, когда происходит конденсация влаги в конструкции.
При нарушении обоих условий, проверяемых в п.3.7 и п.3.8, сопротивление пароизоляции ΔRvp определяется дважды. Из двух величин Δ R vp принимается большая.
В качестве пароизоляции употребляются тонкие листовые и рулонные материалы, обладающие малой паропроницаемостью. Дополнительная пароизоляция выбирается по таблице приложения Г.
Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.
Предельно допустимые значения коэффициента wav
Материал ограждающей конструкции | Предельно допустимое приращение расчетного массового отношения влаги в материале wav, % |
1. Кладка из глиняного кирпича и керамических блоков | 1,5 |
2. Кладка из силикатного кирпича | 2,0 |
3. Легкие бетоны на пористых заполнителях (керамзитобетон, шугизитобетон, перлитобетон, шлакопемзобетон) | 5 |
4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.) | 6 |
5. Пеногазостекло | 1,5 |
6. Фибролит и арболит цементные | 7,5 |
7. Минераловатные плиты и маты | 3 |
8. Пенополистирол и пенополиуретан | 25 |
9. Фенольно-резольный пенопласт | 50 |
10. Теплоизоляционные засыпки из керамзита, шунгизита, шлака | 3 |
11. Тяжелый бетон, цементно-песчаный раствор | 2 |
4. Оценка влажностного состояния ограждающей конструкции по методике СНиП 23-02-2003
Для оценки выполнения требований по защите наружной ограждающей конструкции от переувлажнения следует определить сопротивление паропроницанию ограждающей конструкции и проверить его соответствие требованиям СНиП 23-02. В случае несоблюдения норм по результатам расчета выбрать дополнительный слой пароизоляции.
4.1 Выбор расчетных параметров наружного и внутреннего воздуха
Перед расчетом для заданного района строительства необходимо определить:
- t ext1, t ext2, t ext3 – средние температуры наружного воздуха за зимний, летний и весенне-осенний периоды года;
- eext1, eext2, eext3 – средние значения парциального давления водяного пара наружного воздуха за эти же периоды соответственно;
- z1, z2, z3 – продолжительность зимнего, летнего и весенне-осеннего периодов в месяцах.
Определение этих параметров проводится согласно п.3.1.
Таблицу 3.1 следует дополнить строкой для периода с отрицательными среднемесячными температурами наружного воздуха (t ext < 0), используя данные из табл. А.2 Приложения А. Определяются средние значения температуры t ext0 и парциального давления водяного пара eext0 наружного воздуха за этот период.
Среднее за год значение парциального давления водяного пара наружного воздуха eext рассчитывается по формуле
eext = ( eext1· z1 + eext2· z2+ eext3· z3) (4.1)
Параметры микроклимата помещения tint и eint принимаются согласно заданию, табл.1.2 и п.3.2.
4.2 Определение положения плоскости возможной конденсации влаги в ограждающей конструкции
Согласно СНиП 23-02 в многослойной конструкции плоскость возможной конденсации совпадает с наружной поверхностью слоя утеплителя; а в однослойной ограждающей конструкции – находится на расстоянии, равном 2/3 толщины от ее внутренней поверхности.
4.3 Определение значений температур в плоскости конденсации
Значения температур в плоскости возможной конденсации по периодам года ti (i = 1, 2, 3, 0) рассчитываются по формуле
ti = tint - ( tint - text i ) · (1/int + ∑R) / Ro , (4.2)
где text i - расчетная температура наружного воздуха i-го периода;
1/int – термическое сопротивление внутреннего пограничного слоя воздуха;
∑R - термическое сопротивление части ограждения в пределах от внутренней поверхности до плоскости возможной конденсации;
Ro – сопротивление теплопередаче ограждающей конструкции.
4.4 Определение среднего за год значения парциального давления насыщенного водяного пара в плоскости конденсации
Принимая температуры в плоскости конденсации ti (i = 1, 2, 3, 0) за точку росы, по табл. В.1 и В.2 Приложения В находят парциальные давления насыщенного водяного пара в плоскости конденсации: Е1, Е2, Е3 и Е0.
Среднее за годовой период парциальное давление насыщенного водяного пара в плоскости возможной конденсации вычисляется по формуле
Е = ( Е1· z1 + Е2· z2+ Е3 · z3) . (4.3)
4.5 Определение сопротивлений паропроницанию частей ограждающей конструкции до и после плоскости конденсации
Сопротивления паропроницанию отдельных слоев конструкции Rvp определяются в соответствии с п.3.4 по формуле (3.2).
Вычисляются как суммы соответствующих значений Rvp:
R ivp - сопротивление паропроницанию части конструкции от внутренней поверхности до плоскости конденсации;
Rеvp - сопротивление паропроницанию от плоскости конденсации до наружной поверхности.
4.6 Определение требуемого сопротивления паропроницанию R reqvp1 из условия недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации
Нормируемое сопротивление паропроницанию R reqvp1 (из условия недопустимости накопления влаги в конструкции за год) рассчитывается по формуле
, (4.4)
где eint и eext найдены в п.4.1; Е рассчитывается в п.4.4.
Величина R reqvp1 может получиться отрицательной, если Е > eint и Е > eext. Практически данный случай означает, что влаги в конструкции накапливается мало, в теплый период она быстро испаряется, и большую часть летнего периода конструкция находится в воздушно-сухом состоянии.
4.7 Расчет требуемого сопротивления паропроницанию R reqvp2 из условия ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами
Нормируемое сопротивление паропроницанию R reqvp2 из условия ограничения влаги в конструкции за период с отрицательными среднемесячными температурами (период влагонакопления) определяется по формуле
. (4.5)
В этом выражении eint и eext 0 найдены в п.4.1; Е0 - в п.4.4;
z0 – продолжительность периода влагонакопления, сут, принимаемая равной продолжительности периода с отрицательными среднемесячными температурами (табл.А.1 Приложения А и СНиП 23-01-99);
ρ и δ – плотность и толщина теплоизоляционного слоя;
Δwav – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления, принимаемое по таблице 3.4;
, (4.6)
где Rеvp рассчитывается в п.4.5.
4.8 Проверка соответствия сопротивления паропроницанию ограждающей конструкции требованиям СНиП 23-02
Согласно нормам сопротивление паропроницанию части ограждающей конструкции от внутренней поверхности до плоскости возможной конденсации R ivp должно быть не менее наибольшего из нормируемых сопротивлений паропроницанию
(R reqvp1 , R reqvp2).
Из значений R reqvp1 и R reqvp2 , определяемых в п.4.6 и 4.7, выбирается наибольшее; обозначим его R reqvp. Оно сопоставляется с расчетным значением R ivp, найденным в п.4.5.
Если R ivp ≥ R reqvp , ограждающая конструкция удовлетворяет требованиям СНиП 23-02 в отношении сопротивления паропроницанию.
Если R ivp < R reqvp , то требуется дополнительный слой пароизоляции, необходимое сопротивление паропроницанию которого рассчитывается как
ΔRvp = R reqvp - R ivp (4.7)
Слой пароизоляции выбирается по табл. Приложения Г. Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.
5. Оценка требуемого уровня тепловой защиты здания по нормируемому удельному расходу тепловой энергии на отопление зданий
Как отмечалось во введении, при выборе требований показателя тепловой защиты «в» нормируется величина удельного расхода тепловой энергии на отопление. Это комплексная величина, которая учитывает энергосбережение от использования архитектурных, строительных, теплотехнических и инженерных решений, направленных на экономию энергетических ресурсов, и поэтому возможно при необходимости в каждом конкретном случае установить меньшие, чем по показателям «а», нормируемые сопротивления теплопередаче для отдельных видов ограждающих конструкций. Удельный расход тепловой энергии зависит от теплозащитных свойств ограждающих конструкций, объемно-планировочных решений здания, тепловыделений и количества солнечной энергии, поступающих в помещения здания, эффективности инженерных систем поддержания требуемого микроклимата помещений и систем теплоснабжения.
Удельный расход тепловой энергии на отопление зданий
, кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)], определяется по формуле
или
, (5.1)
где - расход тепловой энергии на отопление здания в течение отопительного периода, МДж;
- отапливаемая площадь квартир или полезная площадь помещений, м2;
- отапливаемый объем здания, м3;
D – градусо-сутки отопительного периода, °С · сут (1.1).
Удельный расход тепловой энергии на отопление зданий должен быть меньше или равен нормируемому значению