133129 (598722), страница 22

Файл №598722 133129 (Современные разработки в психологии) 22 страница133129 (598722) страница 222016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 22)

При ознакомлении широкого круга психологов с проблемами измерения без привлечения специфического материала математических выкладок (которые, несомненно, были бы интересны специалистам по математической психологии) внимание концентрируется на репрезентативной теории измерения. Примерно к середине прошлого века она оказалась наиболее проработанной, но начиная с 80-х годов ее развитие можно охарактеризовать лишь как экстенсивное. Оно шло через привлечение новых математических приемов без систематической эмпирической проверки предлагаемого материала; не уделялось большого внимания и практике психологических измерений.

КОНЦЕПТ ОСМЫСЛЕННОСТИ В РЕПРЕЗЕНТАТИВНОЙ ТЕОРИИ ИЗМЕРЕНИЙ

Несмотря на существующие в данной теории измерения проблемы, она принимается в психологии почти повсеместно и безальтернативно, без критического отношения и анализа происхождения ее оснований, но с пиететом в отношении ее разработчиков.

Одним из наиболее важных, полезных и интересных ее концептов является концепт осмысленности измерения и научного предположения. Его возникновение было заложено в предписаниях, сделанных одним из основателей теории психологических измерений С. Стивенсом относительно использования допустимых преобразований шкал измерения и статистик [8, 16, 21, 33, 34]. Анализ литературы [1, 3 - 7] показывает, что эти предписания являются доминирующими в отечественной теории и практике психологических измерений.

Хотя концепт осмысленности измерения развивается с трансформацией идей Стивенса и разработкой проблем статистики и логики, его положения относительно шкалирования, по проблемам измерений в психологии и связанной с ними осмысленностью измерений требуют, на наш взгляд, критического анализа привычной практики использования психологического измерительного инструментария.

Проблема осмысленности измерений наиболее проработана в рамках так называемого "измерительного подхода" к соотношению статистики и измерения. Основой этих разработок были результаты исследований, проведенных Н. Кемпбеллом [12, 13] и опиравшихся на работы Гельмгольца и Холдера [17, 18], где был сформирован аксиоматический подход к измерению.

Основой для понимания сути измерительного подхода обычно считаются идеи, изложенные в работах, в которых вводятся основные определения по проблемам репрезентативного измерения [21,27]. Эти идеи базируются на некоторых принципиально важных положениях, которые касаются использования измерительных шкал и были изложены Стивенсом в работах [8, 33].

Выводы Стивенса опирались на следующие основных предположения. Первое из них состояло в том, что структуры измерений могут быть определены по их соответствию группам допустимых трансформаций. Если две структуры допускают одни и те же трансформации, тогда, по Стивенсу, их полезно характеризовать как сходные. Две структуры, допускающие преобразования, описываемые линейными функциями (функциями сходства), могут быть отнесены к категории "шкалы отношений". Аффинные преобразования (линейные плюс константа) определяют "интервальные шкалы", монотонные трансформации определяют "порядковые (ординальные) шкалы" и т.д. [26].

Второе касалось определения осмысленности научного высказывания. Охарактеризовав шкалы при помощи допустимого типа трансформации, Стивенс утверждал, что научные высказывания, в частности теоремы в статистике, сформулированные в терминах измеряемых величин, должны учитывать инвариантность значений при тех трансформациях, которые допустимы для данного типа шкалы. При отсутствии такой инвариантности следует говорить о несостоятельности осмысленности измерений, а также научных предположений и выводов.

Кроме того, по Стивенсу, осмысленным высказыванием является такое, в котором определенное им отношение отражает отношение в эмпирической структуре. Например, чтобы произведение двух чисел было осмысленным, должно существовать эмпирическое событие, которое соответствует этому произведению. Если такого события нет, произведение является бессмысленным по определению.

Хотя Стивенс не дал алгебраического определения для концепта осмысленности, он высказал это в виде, по его мнению, интуитивно ясного предположения. В дальнейшем оно стало известным как количественная осмысленность [25].

Полное понимание концепта осмысленности научного высказывания остается недоступным: до сих пор не ясно, каковы условия, при которых инвариантность при допустимых преобразованиях является адекватным критерием для осмысленности, и не известно, какие еще критерии кроме этого могут быть использованы.

Многие сторонники репрезентативной теории измерения принимают, что числа, используемые для репрезентации одного вида эмпирических отношений (например, отношения эквивалентности), не всегда могут обрабатываться тем же способом, что и числа, используемые для репрезентации другого их вида (например, порядка). Это обстоятельство в значительной мере связано с тем, что в работах Стивенса [8, 33] рассмотренные выше концепты допустимости трансформаций были применены для статистических обработок, и было показано, что для выполнения определенных манипуляций с данными требуется, чтобы они соотносились с определенными же измерительными операциями. Сложение величин (например, для того, чтобы вычислить среднее), которые появились при использовании шкалы порядка, или ординальной шкалы, как было указано Стивенсом, оказывается неприемлемым; предполагалось, что операция сложения может быть применена только к величинам интервальных шкал или шкал отношений.

В работах Стивенса утверждалось, что только инвариантные к допустимым трансформациям числовые операций дают результаты, которые имеют соответствующие величины в эмпирической структуре. Если осуществлять манипуляции, не являющиеся инвариантными к допустимым трансформациям, то это, по определению, будет приводить к различным результатам в разных числовых структурах, репрезентирующих одну и ту же эмпирическую структуру.

Отсюда следует, что данной шкале измерений должны соответствовать только те статистические индикаторы, которые основаны на инвариантной в отношении допустимых трансформаций алгебре.

Предположим, что подсчитано среднее арифметическое нескольких длин. Если среднее основано на инвариантной алгебре, то в этой алгебре можно трансформировать длины и вычислить новое среднее, которое будет эквивалентно трансформированному старому. Отсюда следует, что среднее группы длин, измеренных в сантиметрах, равно 2.54 средним тех же длин, но измеренных в дюймах. Кроме того, в эмпирической структуре существует единственная длина, которая соответствует среднему других длин.

Трансформация один в один (1-в-1) среднего номеров на футболках в общем случае не будет равна среднему тех же самых номеров после такой же трансформации каждого номера на футболке по отдельности. Таким образом, получаются два различных средних даже в том случае, когда игроки, обозначенные при помощи величин на футболках (а эти величины были использованы для подсчета среднего в двух рассматриваемых случаях), были одними и теми же. В этом случае для того, чтобы не рассматривать выбор между двумя эмпирически различными средними, Стивенс предписал, что вычисление среднего никогда не должно быть применено к номинальным данным (в данном случае к номерам на футболках).

Соображения Стивенса о группах трансформаций сыграли важную роль. Однако, считается, что их автор все же не предложил аргументов, почему должны получаться именно эти, а не другие группы трансформаций. Поэтому подход Стивенса был скорее дескриптивным, чем аналитическим. Предписания, сформулированные в работах Стивенса, способствовали не только развитию его идей, но и разработке соответствующих контраргументов. Начиная с 50-х гг. стало ясно, что существуют структуры измерения, которые не подходят к предложенной им схеме. Однако значительный прогресс в понимании этой проблемы наметился только к середине 80-х гг.

С самого начала среди сторонников измерительного подхода возникли дебаты о том, какие виды эмпирических фактов могут репрезентироваться измерением. Например, в работе Кемпбелла [12] есть категорические указания на то, что измерение должно быть числовой репрезентацией только фактов конкатенации (измерения длины и аналогичных по процедуре измерения величин) или, по крайней мере, каким-то образом основываться на этих фактах. В терминологии Стивенса это указание Кемпбелла означает ограничение измерения до шкалирования отношениями. Кроме этого, как указывал Стивенс, вводя такие ограничения, Кемпбелл не строго соблюдал главный принцип репрезентализма.

Еще в работе Б. Рассела 1903 г. [30] в концепцию измерения была включена числовая репрезентация ординальных структур. Стивенс оказался даже более либеральным, позволяя включать в измерение числовые репрезентации структур классификации. Эти противоречия были свидетельством роста числа проблем, появляющихся в результате того, что теория репрезентации освободила сама себя от положений классической теории измерения (о ней будет сказано ниже) и последовала внутренней логике своего центрального принципа, примененного к содержанию психологии. В соответствии с ним числовая репрезентация некоторой эмпирической структуры и является измерением.

Использование идей репрезентативной теории измерения порождает естественный вопрос: "Почему для того, чтобы репрезентировать эмпирические структуры, обязательно надо приписывать числа?". Кемпбелл и Рассел не сомневались по поводу ответа на него. В работе [12] сказано, что это делается только для того, чтобы мощное оружие математического анализа могло быть применено к сущностному предмету науки. Математический анализ является мощным оружием, т.к. в нем содержатся соответствующие аргументы и теоремы, которые могут быть применены к эмпирическим высказываниям с момента приписания сущностным явлениям числовых значений. Но выводы, сделанные при помощи числовых аргументов, должны полностью соответствовать самим эмпирическим данным, а не выводами, содержание которых зависит от приписанных чисел. В противном случае измерение являлось бы более чем числовой репрезентацией, а функция чисел - чем-то большим по сравнению с обеспечением процесса дедукции.

Использование чисел при измерении - просто удобство, и они не могут "внести" в выводы свое содержание; выводы же могут быть получены при помощи неметрических эмпирических данных (хотя долго и запутанно), поэтому они не должны быть несвободны от специфики шкалы высказываниями. Свободные же от нее предпосылки репрезентируются числовым образом через измерения. Измерения ведут к зависимым от специфики шкалы выводам, затем из этих выводов делаются свободные от нее выводы. Но тогда релевантной является проблема: действительно ли эти свободные от специфики шкалы выводы были сделаны из свободных от нее предпосылок. В этой связи проблема допустимых статистик или осмысленности может быть опущена.

Как было показано в работе [16], идущее от Стивенса достаточно нестрогое определение осмысленности является неточным; оно провоцирует появление неправильных интерпретаций даже при условии его осторожного применения. Не ясно даже, что подразумевал Стивенс под высказываниями, включающими в себя числовые шкалы. Эта неточность привела к различным альтернативным формулировкам осмысленности, они приведены, например, в работах [9, 23].

Можно предположить, что определенные описательные статистики, т.е. мода, медиана, арифметическое или геометрическое среднее, будут пригодными не всегда, а только в определенных ситуациях измерения. Эта идея первоначально была выдвинута Стивенсом и широко использовалась для применения статистики в гуманитарных науках. Опираясь на принцип, согласно которому высказывания, включающие в себя статистики, должны быть инвариантными (т.е. осмысленными в указанном выше понимании), Стивенс утверждал: медианы соответствуют описательными статистикам для шкал порядка и мощнее, а арифметические средние соответствуют интервальным шкалам и мощнее.

Базисные идеи Стивенса стали также применяться в дедуктивных и выведенных логически статистиках. Основной принцип состоял в том, что в случаях, когда рассматриваемые числа не формируют, по крайней мере, интервальную шкалу, будет неадекватным использовать параметрические статистики (г-тест, корреляцию Пирсона, дисперсионный анализ). Для порядковых шкал могут быть использованы непараметрические статистики (такие, как Mann Whitney U, Kruskal Wallis H или Kendall т).

Как было показано в работе [9], Стивенс, по крайней мере, неточен в изложенной выше концепции. Например, сообщение о медиане или о среднем по множеству измерений просто равносильно сообщению о фактах этого множества, потому запрещать сообщения таких фактов является в значительной степени произволом.

Есть и другой аргумент, ставящий под сомнение предположение Стивенса о том, что только осмысленные утверждения будут полезны для ученого. Рассмотрим сложную теорию с проверяемыми основаниями. Одни ее элементы могут быть проверены через наблюдение, другие - порождать ненаблюдаемые события или переменные, как это имеет место в некоторых важных психологических теориях. Ненаблюдаемые элементы не имеют аналогов в эмпирической структуре по определению; отсюда следует, что они являются бессмысленными в измерительным смысле, и это ставит под сомнение результаты многих работ в психологии. Однако можно утверждать, что указанные элементы обладают некоторой полезностью, например, в качестве инструмента порождения проблем исследования.

Таким образом, репрезентативная теория измерения в целом обладает определенной привлекательностью, но для психологии она не является универсальной. В частности, для случая тестов умственных способностей и кумулятивных рейтинговых шкал, с которыми связана значительная часть работ в психологии, имеющих квантитативный характер, не очень ясно, какие именно эмпирические отношения репрезентируются.

Характеристики

Тип файла
Документ
Размер
8,29 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее