86072 (597866), страница 3

Файл №597866 86072 (Традиционные методы вычислительной томографии) 3 страница86072 (597866) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Затем в равенство (4.1) вместо подставить найденные значения , а в качестве использовать (4.3). При таких условиях последующее суммирование всех членов получившегося ряда позволяет реконструировать искомую функцию, так что

, (4.6)

где и - полярные координаты в плоскости , .

Чтобы разобраться, почему суммирование в (4.6) по индексу проводится от до , достаточно вспомнить, что все коэффициенты при равны нулю. Выбор полинома Чебышева приводит к тому, что коэффициенты обладают еще одним свойством: они также равны нулю, когда сумма их индексов является нечетной. Это следует непосредственно из формулы (4.5), если учесть два обстоятельства:

1) согласно (2.8) ;

2) полином Чебышева четного (нечетного) порядка является соответственно четной (нечетной) функцией своего аргумента.

Объединяя оба условия, имеем

, если или нечетно. (4.7)

Полезно также вспомнить, что для используемых полиномов Чебышева второго рода, которые определяются формулой

, (4.8)

(4.9)

так что эти полиномы ортогональны на отрезке [- 1, 1] относительно весовой функции .

Учитывая (4.9), можно показать [5], что

. (4.10)

Сопоставляя (4.6) и (4.10), видим, что, как искомая функция , так и ее радоновский образ , выражаются через двойные суммы по индексам и , в которых используются одни и те же коэффициенты , но разные последовательности ортогональных функций.

Пример

Пусть , ее радоновский образ находится по (2.7) при и оказывается равным

.

Согласно (4.5), если то (из-за центральной симметрии функции), а для получаем значения коэффициентов разложения

=

=

Выполняя суммирование в (4.6) с данными коэффициентами получим приближенное значение исходной функции изображения .

5. РЕГУЛЯРИЗАЦИЯ ФОРМУЛ ОБРАЩЕНИЯ

Обычно вместо точной проекции известна искаженная проекция

, (5.1)

где описывает соответствующую случайную погрешность,

проявляющуюся в данном случае в виде аддитивной добавки. Тогда задачу реконструкции можно переформулировать следующим образом: требуется по приближенным проекционным данным найти приближенную функцию , которая в каком-то смысле хорошо описывала бы искомую функцию . Непосредственная подстановка "зашумленных" проекционных данных [7] в указанный вычислительный алгоритм приводит к большим искажениям в . Дело в том, что задача реконструкции относится к так называемым некорректным задачам [8]. Физическая суть "некорректности" проявляется в том, что если пользоваться точным решением некорректной задачи, то даже при небольших искажениях в исходных данных это решение может существенно отличатся от искомой функции . Устранить это нежелательное явление можно, регуляризируя формулы обращения. В методах, основанных на преобразовании Радона (раздел 2) для этого достаточно "подавить" влияние высоких частот в , что можно, например, достичь умножением на регуляризующие функции . Обычно регуляризующие функции выбирают в следующем виде:

; (5.2)

; (5.3)

(5.4)

Постоянная называется параметром регуляризации и подбирается эмпирически при расчете. Чем больше интенсивность ожидаемых искажений, тем больше должно быть значение параметра .

Формулы обращения преобразования Радона (2.25) с учетом регуляризации получаются путем замены на , а (2.32) такой же заменой в (2.29).

Что касается метода ортогональных полиномов (раздел 4), то описанный выше алгоритм реконструкции функции является точным в том смысле, что если ее радоновский образ известен точно, то по нему, в принципе, можно найти точные значения всех коэффициентов и далее по формуле (4.6) осуществить точное восстановление искомой функции. Однако на практике реализовать подобное точное восстановление невозможно. Этому препятствуют, по крайней мере, две причины. Первая кроется в самой сущности обсуждаемого алгоритма, ибо, для того чтобы он был точным, необходимо согласно (4.6) в общем случае определить бесконечное число членов . Вторая связана с невозможностью точного измерения радоновского образа. В результате определяемые по нему коэффициенты будут отличаться от их точных значений .

Таким образом, в реальном алгоритме восстановления участвует ограниченное число членов ряда (4.6). Для определенности в дальнейшем будем считать, что ограничение проводится по индексу , так что . Этого условия достаточно, так как в силу (4.7) оно однозначно определяет конечное число всех отличных от нуля коэффициентов . Изменяя порядок суммирования в (4.6) и делая его аналогичным (4.10), имеем

. (5.11)

Известно [5], что ограничение суммирования в (5.1) приводит к функции , хотя и отличной от , но это отличие, оцениваемое по среднеквадратической погрешности

, (5.12)

будет минимально, если коэффициенты в (4.1) рассчитываются по прежним формулам (4.2). Данный факт говорит о том, что вынужденное на практике ограничение числа определяемых коэффициентов не должно привести к изменению тех формул, по которым они рассчитываются.

С увеличением числа - членов суммы (5.11) погрешность (5.12) монотонно уменьшается. Важно подчеркнуть, что это происходит только тогда, когда коэффициенты известны точно. Если же они определяются с некоторыми ошибками, то отмеченная зависимость нарушается. В этом случае конкретный характер поведения погрешности (5.12) с ростом числа М во многом определяется статистикой ошибок измерения. В результате уменьшение усредненной погрешности за счет увеличения числа членов суммы (5.11) может происходить только до некоторого предела, после которого она начинает увеличиваться. Более того, часто при бесконечном увеличении числа слагаемых погрешность стремится к бесконечности. Таким образом, вторая причина, связанная с неточностью определения коэффициентов , так же, как и первая, приводит к необходимости использовать при восстановлении ограниченное число членов ряда (5.1), но в отличие от первой она указывает на то, что это ограничение возможно осуществить оптимальным образом. В данном случае не требуется регуляризации в том виде, в каком она была введена ранее. Ее роль как «сознательного ограничителя точности в идеальных условиях» будет выполнять «сознательное», оптимальное ограничение числа членов аппроксимирующих полиномов для данного уровня шумовых флуктуаций.

ЛИТЕРАТУРА

1. Гельфанд, И.М. Интегральная геометрия и связанные с ней вопросы теории представлений [Текст]: монография / И.М Гельфанд, М.И. Граев, Н.Я. Виленкин. - М.: Физматгиз, 1962. - 656 с.

2. Календер, В. Компьютерная томография. Основы, техника, качество изображения и области клинического использования [Текст]: монография / В. Календер. - М.: Техносфера, 2006, -344 с.

3. Терещенко С.А. Методы вычислительной томографии [Текст]: монография /С.А.Терещенко. – М.: Физматлит, 2004. - 319 с.

4. Наттерер Ф. Математические аспекты компьютерной томографии: Пер. с англ. [Текст]: монография /Ф. Наттерер. -М.: Мир, 1990.-288 с.

5. Хелгасон, С. Преобразование Радона: Пер. с англ. [Текст]: монография / С. Хелгасон. - М.: Мир, 1983. - 152 с.

6. Хермен, Г. Восстановление изображений по проекциям: основы реконструктивной томографии: Пер. с англ. [Текст]: монография / Г. Хермен. - М.: Мир, 1983. - 349 с.

7. Троицкий, И.Н. Статистическая теория томографии [Текст]: монография / И.Н.Троицкий. – М.: Радио и связь, 1989. - 240 с.

8. Тихонов, А.Н. Методы решения некорректных задач. [Текст]: монография / А.Н. Тихонов, В.Я. Арсенин. - М.:Наука, 1986. - 287 с.

9. Гельфанд, И.М. Обобщенные функции и действия над ними [Текст]: монография / И.М. Гельфанд, Г.Е. Шилов. - М.: Физматгиз, 1959. - 497 с.

ПРИЛОЖЕНИЕ А

Чтобы вычислить (2.9), воспользуемся соотношением [9]

, (A1)

где - простые корни уравнения , - их число.

Пусть . Тогда

, , ,

так что . Подстановка (А1) в (2.9) дает

= = , (А2)

где при переходе к последнему равенству было учтено, что .

ПРИЛОЖЕНИЕ Б

Убедиться в справедливости (2.24) можно, если воспользоваться (2.8) и под интеграл в (2.17) вместо подставить , затем сделать замену переменных .

15



Характеристики

Тип файла
Документ
Размер
18,9 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6375
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее