85956 (597848), страница 3

Файл №597848 85956 (Р.Т. Галусарьян. Сборник задач и упражнений по курсу "Высшая математика") 3 страница85956 (597848) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Задача 1. Найти первую производную функции:

Задача 2. Найти первую производную функции:

2.1. 2.2.

2.3. 2.4.

2.5. 2.6.

2.7. 2.8

2.9. 2.10.

2.11. 2.12.

2.13. 2.14.

2.15. 2.16.

2.17. 2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

2.30.

Задача 3. Найти первую производную функции:

3.1. 3.2.

3.3. 3.4.

3.5. 3.6.

3.7. 3.8.

3.9. 3.10. 3.11. 3.12.

3.13. 3.14.

3.15. 3.16.

3.17. 3.18.

3.19. 3.20.

3.21. 3.22.

3.23. 3.24.

3.25. 3.26.

3.27. 3.28.

3.29. 3.30.

Задача 4. Найти первую производную функции:

4.1. 4.2.

4.3. 4.4.

4.5. 4.6.

4.7. 4.8.

4.9. 4.10.

4.11. 4.12.

4.13. 4.14.

4.15. 4.16.

4.17. 4.18.

4.19. 4.20.

4.21. 4.22.

4.23. 4.24.

4.25. 4.26.

4.27. 4.28.

4.29. 4.30.

Задача 5. Найти первую производную функции:

5.1. 5.2.

5.3 5.4.

5.5. 5.6.

5.7. 5.8.

5.9. 5.10.

5.11. 5.12.

5.13. 5.14.

5.15. 5.16.

5.17. 5.18.

5.19. 5.20.

5.21. 5.22.

5.23 5.24.

5.25. 5.26.

5.27. 5.28.

5.29. 5.30.

Задача 6. Найти первую производную функции:

6.1. 6.2.

6.3. 6.4.

6.5. 6.6.

6.7. 6.8.

6.9. 6.10.

6.11. 6.12.

6.13. 6.14.

6.15. 6.16.

6.17. 6.18.

6.19. 6.20.

6.21. 6.22.

6.23. 6.24.

6.25. 6.26.

6.27. 6.28.

6.29. 6.30.

Задача 7. Найти п-ую производную функции:

7.1.

7.11.

7.12.

7.13.

7.14.

7.16.

7.17.

7.19.

7.20.

7.22.

7.24.

7.25.

7.26.

7.28.

7.29.

7.30.

Задача 8. С помощью формулы Лейбница найти указанную производную данной функции:

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11.

8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

8.21.

8.22.

8.23.

8.24.

8.25.

8.26.

8.27.

8.28.

8.29.

8.30.

Задача 9. Найти первую и вторую производные от функции у(х), заданной неявно:

9.1. 9.2.

9.3. 9.4.

9.5. 9.6.

9.7. 9.8.

9.9. 9.10.

9.11. 9.12.

9.13. 9.14.

9.15. 9.16.

9.17. 9.18.

9.19. 9.20.

9.21. 9.22.

9.23. 9.24.

9.25. 9.26.

9.27. 9.28.

9.29. 9.30.

Задача 10. Найти первую и вторую производные от функции у(х), заданной параметрически:

10.1. 10.2.

10.3. 10.4.

10.5. 10.6.

10.7. 10.8.

10.9. 10.10.

10.11. 10.12.

10.13. 10.14.

10.15. 10.16.

10.17. 10.18.

10.19. 10.20.

10.21. 10.22.

10.23. 10.24.

10.25. 10.26.

10.27. 10.28.

10.29. 10.30.

Задача 11. Используя геометрический смысл производной, решить следующую задачу:

11.1 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=4х – х2, равна квадрату абсциссы точки касания.

11.2 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у=1 – х2/4, равна расстоянию от точки касания до начала координат.

11.3 Через произвольную точку кривой ху = 4 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.

11.4 Через произвольную точку кривой ху = х+2 проведена касательная. Доказать, что касательная пересекает прямую у = 1 в точке с абсциссой, равной удвоенной абсциссе точки касания.

11.5 Доказать, что площадь треугольника, образованного касательной к кривой у = 2/(1 – х),ординатой точки касания и осью абсцисс равна 1.

11.6 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=3хlnx+5x, равна утроенной абсциссе точки касания.

11.7 Через произвольную точку кривой у = а х3 проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 2/3 абсциссы точки касания.

11.8 Через произвольную точку кривой у=х2 + 2/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 3.

11.9 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=5х –2 х2, равна удвоенному квадрату абсциссы точки касания.

11.10 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у= х2/2 – 1/2, равна расстоянию от точки касания до начала координат.

11.11 Через произвольную точку кривой ху = 2 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.

11.12 Через произвольную точку кривой ху=2х+3 проведена касательная. Доказать, что касательная пересекает прямую у = 2 в точке с абсциссой, равной удвоенной абсциссе точки касания.

11.13 Доказать, что площадь треугольника, образованного касательной к кривой , ординатой точки касания и осью абсцисс равна 2.

11.14 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой , равна удвоенной абсциссе точки касания.

11.15 Через произвольную точку кривой у = 3х4 проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 3/4 абсциссы точки касания.

11.16 Через произвольную точку кривой у = х2 + 18/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 27.

11.17 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у= –3х2–1, равна утроенному квадрату абсциссы точки касания.

11.18 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой у=1/8 – 2х2, равна расстоянию от точки касания до начала координат.

11.19 Через произвольную точку кривой ху = 8 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.

11.20 Через произвольную точку кривой проведена касательная. Доказать, что касательная пересекает прямую в точке с абсциссой, равной удвоенной абсциссе точки касания.

11.21 Доказать, что площадь треугольника, образованного касательной к кривой у = 8/(2 – х),ординатой точки касания и осью абсцисс равна 4.

11.22 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=хlnx+9x, равна абсциссе точки касания.

11.23 Через произвольную точку кривой проведена касательная. Доказать, что абсцисса точки пересечения касательной с осью абсцисс равна 4/5 абсциссы точки касания.

11.24 Через произвольную точку кривой у=3х2 + 8/х проведена касательная. Доказать, что площадь трапеции, ограниченной осями координат, касательной и перпендикуляром, опущенным из точки касания на ось абсцисс, равна 12.

11.25 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у = 3х – х2/2 равна половине квадрата абсциссы точки касания.

11.26 Доказать, что длина отрезка, отсекаемого на оси ординат нормалью, проведенной в любой точке кривой , равна расстоянию от точки касания до начала координат.

11.27 Через произвольную точку кривой ху = 12 проведена касательная. Доказать, что отрезок касательной, заключенный между осями координат, делится пополам в точке касания.

11.28 Через произвольную точку кривой ху+4х=2 проведена касательная. Доказать, что касательная пересекает прямую в точке с абсциссой, равной удвоенной абсциссе точки касания.

11.29 Доказать, что площадь треугольника, образованного между касательной к кривой у = 10/(4 – х),ординатой точки касания и осью абсцисс равна 5.

11.30 Доказать, что длина отрезка, отсекаемого на оси ординат касательной в любой точке кривой у=0,5хlnx+2x, равна половине абсциссе точки касания.

Задача 12. Найти наибольшее и наименьшее значение функции на данном отрезке:

12.1. 12.2.

12.3.

12.4.

12.5.

12.6.

12.7.

12.8.

12.9.

12.10.

12.11.

12.12.

12.13.

12.14.

12.15.

12.16 12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

12.25.

12.26.

12.27.

12.28.

12.29.

12.30.

Задача 13. Исследовать функцию и построить график:

13.1. а) , б)

13.2. а) , б)

13.3. а) , б)

13.4. а) , б)

13.5. а) , б)

13.6. а) , б)

13.7. а) , б)

13.8 а) , б)

13.9. а) , б)

13.10. а) , б)

13.11. а) , б)

13.12. а) , б)

13.13. а) , б)

13.14. а) , б)

13.15. а) , б)

13.16. а) , б)

13.17. а) , б)

13.18. а) , б)

13.19. а) , б)

13.20. а) , б)

13.21. а) , б)

13.22. а) , б)

13.23. а) , б)

13.24. а) , б)

13.25. а) , б)

13.26. а) , б)

13.27. а) , б)

13.28. а) , б)

13.29. а) , б)

13.30. а) , б)

Глава 5. Семинарские занятия

§ 5.1 Cеминар: Применение производной при исследовании функции

Основные вопросы

1. Признаки монотонности функции.

2.Необходимое условие существования экстремума.

3. Критические точки на экстремум.

4. Достаточные условия существования экстремума.

5. Наибольшее и наименьшее значение функции на отрезке.

Характеристики

Тип файла
Документ
Размер
18,46 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6375
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее