85872 (597842), страница 2
Текст из файла (страница 2)
3. | x | -1 | 0 | 4 |
p | 0.1 | 0.3 | 0.6 |
4. | x | -2 | 0 | 2 |
p | 0.1 | 0.3 | 0.6 |
5. | x | -5 | 0 | 5 |
p | 0.1 | 0.6 | 0.3 |
6. | X | -1 | 0 | 2 |
P | 0.2 | 0.2 | 0.6 |
7. | X | 0 | 1 | 6 |
P | 0.5 | 0.4 | 0.1 |
8. | X | -3 | 0 | 3 |
P | 0.4 | 0.2 | 0.4 |
9. | X | -2 | 0 | 5 |
P | 0.5 | 0.1 | 0.4 |
10. | X | -1 | 0 | 1 |
P | 0.4 | 0.2 | 0.4 |
В следующих задачах непрерывная случайная величина Х задана плотностью распределения вероятности:
Требуется вычислить константу А и математическое ожидание Х. Найти вероятность Р(с 11. a=0, b=3, c=1, d=2. 16. a=3, b=8, c=0, d=5. 12. a=0, b=2, c=1, d=3. 17. a=3, b=10, c=1, d=2. 13. a=1, b=5, c=2, d=3. 18. a=4, b=8, c=1, d=5. 14. a=1, b=7, c=5, d=10. 19. a=5, b=10, c=0, d=7. 15. a=1, b=10, c=5, d=7. 20. a=5, b=8, c=7, d=8. ЗАДАНИЕ 6. СХЕМА БЕРНУЛЛИ Вероятность рождения мальчика равна 0,52. Случайная величина Х- число родившихся мальчиков среди 1000 новорожденных. Найти числовые характеристики Х и вероятности а) Р ( 2.Вероятность того, что клиенту страховой компании понадобится страховка равна 0,01. Случайная величина Х- число клиентов, которые обратятся в страховую компанию за страховкой из 10000 застраховавшихся. Найти числовые характеристики Х и вероятности а) Р( 3. Вероятность того, что зашедший в магазин посетитель приобретет товар равна 0,35. Случайная величина Х- число посетителей, которые приобрели товар из 1000 вошедших в магазин. Найти числовые характеристики Х и вероятности а) Р(Х=350) б) Р(320Х380). 4. По предварительным опросам известно, что 40% опрошенных готовы проголосовать на выборах мэра города за №. Найти вероятность того, что из 50000 жителей, имеющих право проголосовать, за № отдадут голоса а) ровно 20000 человек; б) от 15000 до 25000 человек. 5. Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной, равна 0,1. Найти вероятность, что среди 500 деталей окажется бракованными а) ровно 50; б) от 40 до 60. 6. Вероятность нарушения герметичности банки консервов 0,001. Найти вероятность того, что среди 20000 банок с нарушениями окажутся а) ровно 20; б) от 15 до 25. 7. Всхожесть семян данного растения составляет 80%. Найти вероятность того, что среди 200 посаженных семян взойдет а) ровно 160; б) от 140 до 180. 8. Магазин получил 1000 бутылок минеральной воды. Вероятность того, что при перевозке бутылка будет повреждена равна 0,003. Найти вероятность того, что магазин получит поврежденными: а) ровно 3 бутылки; б) более 5 бутылок. 9. Книга издается тиражом 10000 экземпляров. Технология изготовления предполагает, что вероятность того, что в книге будет иметься дефект брошюровки равна 0,0003. Найти среднее число книг с дефектом брошюровки. Найти вероятность того, что число книг с дефектом брошюровки будет: а) хотя бы одна; б) более 4. 10. Устройство состоит из 1000 элементов, работающих независимо друг от друга. Вероятность отказа любого элемента в течении часа равна 0,005. Найти числовые характеристики Х- числа элементов отказавших в течении часа. Найти вероятность того, что в течении часа откажет а) хотя бы один элемент; б) от 4 до 6 элементов. ЗАДАНИЕ 7. РАСПРЕДЕЛЕНИЕ ПУАССОНА. РАВНОМЕРНОЕ И ПОКАЗАТЕЛЬНОЕ РАСПРЕДЕЛЕНИЯ Число сообщений Х, поступающих на пульт диспетчера в течении часа, подчиняется закону Пуассона с параметром =5(сообщений в час). Найти числовые характеристики Х и вероятности следующих событий: а) Р(Х=0); б) Р(Х>3). В порт в среднем приходит 2,5 судна в день. Предполагается, что Х- число судов зашедших в порт в течении суток, имеет распределение Пуассона. Найдите числовые характеристики Х и вероятности следующих событий: а) Р(Х1); б) Р(х3). Интервалы времени между приходами в порт судов распределены по показательному закону с интенсивностью =5 (часов). Найти числовые характеристики Х- время между приходами двух судов. Вычислить: а) Р(Х Время между двумя сообщениями, поступающими на торговую площадку (с.в.Х), имеет показательное распределение с параметрами =0,5 (часа). Найти числовые характеристики Х и следующие вероятности а) Р(Х<0,2); б) Р(0,3 С.в. Х - время безотказной работы элемента имеет показательное распределение, причем известно, что среднее время безотказной работы элемента рано 1,5 суток. Найти числовые характеристики Х и следующие вероятности: а) Р(Х<1); б) Р(1,4<Х<1,6). Случайная величина Х- время обслуживания клиентов в мастерской имеет показательное распределение с функцией распределения F(х)=1-е-3х(отсчет времени берется в часах). Найти числовые характеристики Х и следующие вероятности а) Р(Х<0,5) б) Р(0,2 Автобусы некоторого маршрута имеют интервал движения 10 мин. С.в. Х - время, в течении которого пассажиру придется ждать автобус, имеет равномерное распределение. Найти числовые характеристики Х и вероятность того, что пассажир будет ждать автобус более 3 минут. С.в. Х - имеет равномерное распределение на отрезке [2,6]. Найти функцию распределения и плотность распределения вероятности, числовые характеристики Х и вероятность Р(Х Шкала лабораторных весов имеет цену деления 1 грамм. При взвешивании вес округляется в ближайшую сторону. Какова вероятность, что абсолютная ошибка определения массы: а) будет заключена между DX и 2DX? б) будет менее 0,2 грамма. Минутная стрелка часов перемещается скачком в конце каждой минуты. Найти вероятность того, что в настоящий момент часы покажут время, которое отличается от истинного не более чем на 15 секунд. ЗАДАНИЕ 8. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ. ПРАВИЛО 3-Х СИГМ Автомат штампует детали. Контролируемый размер является случайной величиной Х, имеющей нормальное распределение с параметром а=50, Жирность молока коров в область (в %) есть нормально распределенная с.в. с математическим ожиданием равным 4% и среднеквадратическим отклонением 0,03. Вычислить вероятность того, что в наудачу взятой пробе жирность молока будет: а) более 4%; б) менее 4%; в) от 3,95 до 4,05%. Выписать плотность распределения данной с.в. Продолжительность работы прибора есть нормально распределенная с.в. с параметрами а=1000 ч. и Рост людей призывного возраста предполагается нормально распределенным со средним 170 см. и средним квадратическим отклонением 7 см. Определить процент лиц, имеющих рост а) более 170 см. б) менее 170 см. в) от 170 до 180 см. Решение п. в) изобразить схематично на графике плотности распределения. Изменение индекса ценной бумаги на фондовой бирже может быть смоделировано как нормально распределенная случайная величина с параметрами а=1 и Средний процент выполнения плана предприятиями отрасли составляет 103%, среднее квадратическое отклонение 2%. Предполагая, что выполнение плана предприятиями подчиняется нормальному закону, определить процент предприятий, выполняющих план: а) более 103% б) менее 103% в) от 99% до 107%. Решение п. в) схематично изобразить на графике плотности распределения. Диаметр деталей, изготовленных цехом, является с.в., имеющей нормальное распределение с математическим ожиданием равным а=5 см. и дисперсией 0,0004. В каких границах можно практически гарантировать диаметр деталей. Если данная с.в. выйдет за эти границы, то объясните ситуацию. Подсчитайте процент деталей, заключенных в пределах от 4,96 до 5,04. На автомате изготовляют заклепки. Диаметр заклепок можно считать нормально распределенной с.в. со средним 3 мм и среднем квадратическим отклонением 0,1. Какие размеры диаметра головок заклепки можно гарантировать с вероятностью: а) 0,95; б) 0,9973. Контролируемый размер детали представляет собой нормально распределенную с.в. с параметрами МХ=150 мм Вес отдельной коробки конфет представляет собой нормально распределенную с.в. со средним 500 гр. и средним квадратическим отклонением 10 гр. а) Найти процент коробок, вес которых более 500 гр. б) Найти процент коробок, вес которых заключен в пределах 50015 гр. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЗАДАНИЕ 9. ПЕРВИЧНАЯ ОБРАБОТКА ДАННЫХ ПО НЕСГРУППИРОВАННЫМ НАБЛЮДЕНИЯМ 1-10. В следующих задачах дана выборка. Требуется: а) Построить статистический ряд распределения частот и полигон частот; б) Вариационный ряд; в) Найти "хорошие" оценки математического ожидания и дисперсии; г) Найти выборочные моду, медиану, коэффициент вариации, коэффициент асимметрии. 0,1,1,3,1,2,2,0,1,0. 1,5,1,2,1,3,2,3,1,2. 10,8,10,11,9,10,8,9,10,10. 50,45,45,55,45,50,40,45,50,45. 20,22,20,24,20,22,20,20,25,22. -1,1,0,1,1,2,-1,1,2,1. 9,5,5,7,5,7,3,5,9,7. 15,12,8,15,10,15,8,12,15,12. 10,20,20,5,15,20,5,10,20,5. 0,-1,2,-2,0,0,-1,2,-1,-2. ЗАДАНИЕ 10. ДОВЕРИТЕЛЬНЫЕ ИНТЕРВАЛЫ 25 рабочих контролировались в течении месяца по признаку - процент выполнения норм выработки за месяц. По выборочным данным были рассчитаны Используя данные задачи 1, определите, каким должен быть минимальный размер выборки для того, чтобы оценить среднюю месячную норму выработки с 95% надежностью и с максимальной ошибкой (точностью) не более 0,5(%). Из большой партии электроламп случайным образом взята выборка из 100 ламп. Средняя продолжительность горения лампы, оцененная по выборке оказалась равной 1200 ч. Из предыдущих проверок известно, что данный признак имеет нормальное распределение с дисперсией 2=2500. Найти 97% доверительный интервал для генеральной средней. Используя данные задачи 3, определите, каким должен быть минимальный размер выборки для того, чтобы оценить среднюю продолжительность горения лампы с 99% надежностью и с точностью не более 100 (ч). Произведено 15 замеров контролируемого признака детали, изготовляемой станком-автоматом. По выборочным данным найдено S2=20 мкм. Найти точность работы станка с надежностью 0,95. Предполагается, что контролируемый признак имеет нормальное распределение. По предварительному опросу населения большого города, в котором участвовало 900 жителей, за мероприятие Х, готовы проголосовать 400 человек из опрошенных жителей. Найти 90% доверительный интервал, в котором находится истинный процент готовых проголосовать за мероприятие Х. Используя данные задачи 6, определите, каким должен быть минимальный размер выборки для того, чтобы оценить истинный процент "за" с 95% надежностью и с точностью не более 2%. Недельные доходы фирмы подчинены нормальному закону распределения. По 25-еженедельным наблюдениям за доходами фирмы найдено S2=1200. Найдите 95% доверительный интервал для среднего квадратического отклонения недельных доходов. Средний привес 16 поросят, которым давали в пищу добавку А, составил 30 кг, а S2=1,5. Считая, что данный признак имеет нормальное распределение, найдите 90% доверительный интервал для генеральной средней. Среди 400 деталей, изготовленных станком-автоматом, 20 оказалось нестандартных. Найдите доверительный интервал, покрывающий с надежностью 0,98 неизвестную вероятность "брака". ЗАДАНИЕ 11. ПРОВЕРКА ГИПОТЕЗ. F, T - КРИТЕРИИ 1-5. Для сравнения организации работы на двух однотипных предприятиях, были взяты выборочные данные объемами n1 и n2 соответственно по признаку - объемы выпущенной продукции в у.е. Оценки дисперсии 1. n1=10, n2=15; 2. n1=16, n2=9; 3. n1=12, n2=17; 4. n1=8, n2=17; 5. n1=11, n2=9; 6-10. Для сравнения производительности работы двух однотипных отделов торговли, были взяты две соответствующие выборки объемами n1 и n2 соответственно, по которым подсчитаны выборочные характеристики: 6. n1=15, n2=20; 7. n1=20, n2=16; 8. n1=12, n2=8; 9. n1=9, n2=14; 10. n1=8, n2=20; ЗАДАНИЕ 12.Критерий Пирсона 1-3. Ниже приведены данные о фактических объемах сбыта (в у.е.) в пяти районах. Согласуются ли эти результаты с предположением о том, что сбыт продукции в этих районах одинаков. Уровень значимости выбрать самостоятельно. 1. Район 1 2 3 4 5 Объем сбыта 75 90 85 70 80 2. Район 1 2 3 4 5 Объем сбыта 85 120 140 70 85 3. Район 1 2 3 4 5 Объем сбыта 50 65 70 80 35 4-10. В следующих задачах для приведенных сгруппированных данных проверить гипотезу о том, что они получены из нормальной генеральной совокупности. Уровень значимости выбрать самостоятельно. 4. Границы интервала 0-6 6-12 12-18 18-24 24-30 30-36 36-42 Частота 2 9 19 35 24 13 6 5. Граница интервала 0-4 4-8 8-12 12-16 16-20 20-24 Частота 7 16 55 22 4 2 6. Граница интервала 10-14 14-18 18-22 22-26 26-30 30-34 Частота 10 31 65 25 8 3 7. Граница интервала 1-5 5-9 9-13 13-17 17-21 21-25 25-29 Частота 3 29 56 81 67 19 8 8. Граница интервала 14-16 16-18 18-20 20-22 22-24 24-26 Частота 12 20 78 45 10 3 9. Граница интервала 7-9 9-11 11-13 13-15 15-17 17-19 19-21 Частота 2 35 97 86 45 26 4 10. Граница интервала 30-32 32-34 34-36 36-38 38-40 40-42 42-44 Частота 19 43 101 95 40 13 3 ЗАДАНИЕ 13. ИсслЕДОВАНИЕ ЗАВИСИМОСТЕЙ В следующих задачах следует построить уравнение регрессии вида 1. Данные о выпуске продукции (Y) и энерговооруженности (X) на 6 предприятиях. Xi 2 3 5 6 6 7 Yi 2,5 5,5 10 10 11,5 13,5 2. Данные об удельной величине спроса товаров (Y) и среднедушевого дохода (Х). Xi 1 2 3 4 6 6 Yi 3,5 6,1 7,5 7,8 8,2 8,1 3. Данные об объеме валового продукта (Y) и затратами на капитальные вложения (Х) по 6 предприятиям. Xi 1 1 2 4 6 8 Yi 4,5 5,1 10,3 18,1 19,2 19,8 4. Данные об объеме выпуска продукции (Y) и ее себестоимости. Xi 2 2 3 4 5 6 Yi 8,5 9,1 11,2 12,8 15,1 17,3 5. Данные о долговечности элемента (Y) и величине эксплуатационного напряжения (Х). Xi 6 7 7 8 9 9 Yi 40,1 45,4 46,2 53,2 59,5 60,2 6. Данные об урожайности (Y) и количестве весенних осадках (Х). Xi 1 2 2 3 4 5 Yi 0,8 3,5 4,2 7,1 9,8 13,1 7. Данные об урожайности (Y) и механовооруженности (Х) Xi 1 1 2 2 3 5 Yi 4,2 3,9 4,8 5,1 6,2 7,7 8. Данные о зависимости стоимости сооружения (Y) и срока ее эксплуатации (Х). Xi 1 2 3 3 4 6 Yi 0,7 4,2 7,3 7,1 10,3 15,6 9. Данные об изменении массы просят (Y) и возраста (Х). Xi 4 5 7 7 8 10 Yi 12,6 14,2 16,3 15,9 17,4 18,8 10. Данные о производительности труда (Y) и фондовооруженности (Х). Xi 2 4 6 6 7 8 Yi 0,8 5,2 8,7 9,2 11 13,2 IV. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ Пример_1. Студент знает 15 вопросов из 25. Наудачу ему задается вопрос. Найти вероятность того, что он его знает. Решение: Мы находимся в классической схеме. Действительно, если представить эксперимент в виде урновой схемы - в урне 25 пронумерованных шаров из которой достается один шар- то ясно, что все исходы равновозможные и их конечное число. Далее A={студент знает предложенный вопрос}, m=15- число исходов благоприятствующих А, n=25- общее число исходов. Тогда Пример 2. Из колоды в 36 карт, достается одна. Найти вероятность того, что она "красная". Решение: Обозначим А={наудачу вынутая карта- "красная"}; m=18- число исходов благоприятствующих А, т.к. в колоде из 36 карт, 18 "красных" карт; n=36- общее число исходов. Тогда по классическому определению вероятности Пример 3.Стрелок произвел 100 выстрелов по мишени, причем поразил мишень в 45 случаях. Найти вероятность того, что стрелок поразит мишень. Решение: Подсчитаем относительною частоту события А={стрелок поразит мишень при одном выстреле}. Таким образом искомая вероятность Р(А)=0,45. Пример 4. Вероятность того, что событие А произойдет в опыте равна 0,75; вероятность того, что событие В произойдет в опыте- 0,4. Вероятность того, что оба события произойдут в опыте равна 0,25. Найти вероятность того, что хотя бы одно событие произойдет в опыте. Решение: Обозначим А={событие А произошло в опыте}, В={событие В произошло в опыте} Тогда АВ={события А и В произошли в опыте одновременно}. Р(А)=0,75; Р(В)=0,4; Р(АВ)=0,25. Используя теорему о сумме двух совместных событий получим Р(А+В)=Р(А)+Р(В)-Р(АВ)=0,75+0,4-0,25=0,9. Пример 5. Деталь проходит три операции обработки. Вероятность появления брака во время первой операции равна 0,02, второй- 0,01, третьей- 0,03. Найти вероятность: а) выхода стандартной детали, считая появление брака во время отдельных операций независимыми событиями; б) выхода бракованной детали. Решение: а) введем события А={на выходе появилась стандартная деталь}, Аi={i-я операция обработки прошла без брака}, i=1,2,3. Тогда А=А1А2А3. По условию задачи Р(А1)=0,98; Р(А2)=0,99; Р(А3)=0,97.Используя теорему умножения для независимых событий, получаем. Р(А)=Р(А1А2А3)=Р(А1)Р(А2)Р(А3)=0,980,990,97=0,9411. б) Пример_6. Партия деталей содержит 70% деталей первого завода и 30% деталей второго завода. Вероятность того, что деталь с первого завода проработает без отказа более 1000 часов (надежность) равна 0,95 , а для деталей со второго завода эта вероятность равна 0,9. а) Найти вероятность того, что случайно взятая из партии деталь проработает без отказа более 1000 часов. б) Деталь прошла испытание и проработала безотказно 1000 часов. Найти вероятность того, что она с первого завода. Решение: Введем события А={деталь проработает без отказа более 1000 часов}.Hi={взятая деталь с завода i} , i=1,2 по условию задачи P(H1)=0,7 ; P(H2)=0,3 ; P(A/H1)=0,95 ; P(A/H2)=0,9. По формуле полной вероятности P(A)= P(H1) P(A/H1)+ P(H2) P(A/H2)=0,70,95+0,30,9=0,935. Таким образом, партия деталей (большое количество) будет содержать где-то 93,5% деталей с заданной надежностью. б) Сохраним обозначения п. а). по формуле Бейеса Пример 7. Найти числовые характеристики с.в. Х , построить функцию распределения если: Х -4 0 8 Р 0,2 р 0,6 Решение: р=1-(0,2+0,6)=0,2. График ф.р. МХ=-40,2+00,2+80,6=4, DX=MX2-(MX)2=(-4)20,2+020,2+820,6-(4)2=25,6. Среднее квадратическое отклонение коэффициент вариации Мода(Х)=8, т.к. 8 имеет наибольшую вероятность, равную 0,6. Коэффициент асимметрии Пример 8. Вероятность того, что в данный день торговая база уложится в норму расходов на транспорт, равна 0,8. Какова вероятность того, что за три рабочих дня база уложится в норму 2 раза. Найти числовые характеристики с.в. Х- число дней, когда база укладывается в норму транспортных расходов в течение трех рассматриваемых дней. Решение: Можно считать, что мы находимся в схеме Бернулли, а следовательно с.в. Х имеет биномиальное распределение. По условию задачи n=3 , p=0,8. Тогда в) коэффициент вариации г) коэффициент асимметрии д) коэффициент эксцесса е) Мода (наивероятнейшее число) находится из неравенства np-qМода(Х) 2,2Мода(Х)<3,2Мода(Х)=3. Пример 9. В условиях предыдущего примера, найти вероятность того, что из 100 рабочих дней торговая база уложится в норму транспортных расходов: а) ровно 80 раз; б) от 75 до 85 дней включительно. Решение: а) в нашем случае n=100; p=0,8; q=0,2. Воспользоваться точной формулой для вычисления Р(Х=80) практически невозможно, поэтому воспользуемся приближенной. Так как npq=1000,80,2=16>9,то применим локальную теорему Муавра- Лапласа. (0)- найдено по таблице 3 приложения-плотности нормального распределения N(0,1); б) воспользуемся интегральной теоремой Муавра- Лапласа. =2Ф(1,25)=20,39435=0,7887 здесь Ф(Х)- функция Лапласа, значение которой найдено по таблице. Пример 10. Вероятность того, что наборщик ошибется при наборе знака равна 0,0001. Найти вероятность того, что набирая 30000 знаков, наборщик допустит: а) ровно 3 ошибки; б) от 2 до 4 ошибок включительно. Решение: Можно считать, что мы находимся в схеме Бернулли с параметрами n=30000, p=0,0001. Тогда npq=300000,00010,99993<9, поэтому для вычисления отдельных вероятностей воспользуемся теоремой Пуассона: =np, k=0,1,2,... а)пользуясь таблицей, получим б) =0,22404+0,22404+0,16803=0,61611. Пример 11. С.в. Х имеет распределение Пуассона со средним равным 1,5. Найти числовые характеристики Х. Вычислить вероятности: а) Р(Х=0); б) Р(Х1); в) Р(Х>7). Решение: Для с.в. имеющей распределение Пуассона с параметром известно, что МХ=. Следовательно, из условия задачи (МХ=1,5) находим, что =1,5.Числовые характеристики Х равны МХ==1,5 ; DХ==1,5; среднее квадратическое отклонение Коэффициент вариации Коэффициент асимметрии Коэффициент эксцесса Моду с.в. Х найдем по таблице: Мода(Х)=1, т.к. Х=1 имеет наибольшую вероятность.а) По таблице находим Р(Х=0)=0,22313; б) Р(Х1)=1-Р(Х=0)=0,77687; в) Р(Х>7)=0,00017.Эта вероятность найдена по таблице 2 приложения, она настолько мала, что можно считать, что больше 7 событий практически не происходят. Пример 12. Из урны содержащей четыре белых и шесть черных шаров, наудачу извлекают три шара. Какова вероятность, что среди них два черных шара. Найдите числовые характеристики с.в. Х- число черных шаров из вынутых трех шаров. Решение: Мы находимся в схеме формирования с.в. Х имеющей гипергеометрическое распределение с параметрами (N,p,n): k=0,1,2,..., q=1-p. В нашем случае: N=6+4=10 - общее число шаров в урне; n=3 - число шаров, которые достаются из урны; Np=6 - количество черных шаров, p=6/N=6/10=0,6 (p связано с черными шарами, т.к. Х- тоже связано с черными шарами); Nq=4 - число белых шаров, q=0,4. Итак: Числовые характеристики с.в. Х равны MX=np=30,6=1,8 ; Среднее квадратическое отклонение Коэффициент вариации Коэффициент асимметрии Пример 13. С.в. Х имеет показательное распределение с параметром =2. Найти числовые характеристики с.в. Х и вычислить Р(1 Решение: Числовые характеристики с.в. Х вычисляются по формулам: -математическое ожидание; среднее квадратическое отклонение; V(X)=100% -коэффициент вариации всегда равен 100% ; Медиана (Х)= График плотности с.в. Х имеет вид изображенный на рис.1. Из этого графика видно, что локальный максимум плотности находится в точке О. Следовательно Мода(Х)=0. Коэффициент асимметрии (Х)=2 (всегда 2). Коэффициент эксцесса е(Х)=6 (всегда 6). рис.1 Пример 14. а) Выпишите плотность с.в. Х и изобразите эскиз графика плотности. б) Найти числовые характеристики с.в. Х. в) Найти границы за которые практически не выходит с.в. Х. г) Вычислить Р(135 Решение: а) Выпишем плотность с.в. Х: б) Найдем числовые характеристики Х. МХ=Мода( D(X)=2=36(x)= Коэффициенты асимметрии и эксцесса равны 0. Коэффициент вариации в) используя правило 3 сигм, можно утверждать, что с.в. Х практически (с вероятностью 0,9973) не выйдет за границы интервала а- 3 г) Р(135 здесь Ф()-функция Лапласа, значение которой найдено по таблице. Отметим свойство функции Ф(х):Ф(-х)=-Ф(х) поэтому Ф(-2,5)=- Ф(2,5)=-0,49379. Пример 15. Найдите выборочные числовые характеристики по выборке: 3,5,6,3,3,6,3,7,5,5,3. Решение: Построим статистический ряд частот: Варианты хi 3 5 6 7 Частота ni 5 3 2 1 Объем выборки n=n1+n2+n3+n4=5+3+2+1=11. S2= Оценки Коэффициент асимметрии (х)= Пример 16. По выборочным данным найти Интервал Частота ni 5-11 18 11-17 25 17-23 14 23-29 8 29-35 2 Решение: Построим гистограмму частот Для удобства Интервал Середина интервала Частота ni Накопленная частота вычислений 5-11 8 18 18 составим 11-17 14 25 43 таблицу. 17-23 20 14 57 23-29 26 8 65 29-35 32 2 67 =67 При вычислении = Здесь L- нижняя граница интервала, в котором находится медиана (медианный интервал); i- величина медианного интервала; n- объем выборки; f- частота медианного интервала; F- накопленная частота интервала, предшествующему медианному. В нашем случае n=67, следовательно, медиана равна члену, стоящему на (n+1)/2=34-м месте в вариационном ряду. По накопленным частотам заключаем, что этот член находится в интервале (11,17). Следовательно, медианный интервал (11,17). Тогда L=11, i=6, (n+1)/2=34, f=25, F=18 и, следовательно Медиана = 11+6 Мода находится по формуле Мода= L+i где L- нижняя граница модального интервала, i- величина модального интервала fмо, fмо-1, fмо+1 частота модального, предшествующего модальному и следующего за модальным интервала. В нашем случае модальный интервал [11,17], т.к. имеет наибольшую частоту. Тогда L=11, i=6, fмо=25, fмо-1=18, fмо+1=14; Мода = Пример 17. Найти 97,5% доверительный интервал для неизвестного параметра а нормально распределенного признака, если известно =7,3. По выборке объема n=64 найдено Решение Требуемый доверительный интервал равен где надежность =0,975 позволяет найти U из уравнения 2Ф(U)=0,975. Из таблицы 4 приложения находим U=2,24. Тогда 120,3-2,044 Пример 18. В условиях предыдущего примера, определите минимальный объем выборки, чтобы с надежностью =0,975 точность оценки была не больше 0,5. Решение: Точность оценки зависит от выражения Подставляя U=2,24 ; 2=7,32=53,29 ; 2=0,52=0,25 ,получим Таким образом, минимальный объем выборки должен составлять 1070 измерений. Пример 19. По выборке объема n=25 найдены Решение. Искомый доверительный интервал равен где Здесь =1-=0,1; К=n-1=25-1=24, тогда t0,1(24)=1,711. Итак,
=520) б) Р(510
530).
=100) б)Р(90
110).
(1,2)); б) Р(Х
(4,6))
(3,4)).
=0,02. Выписать функцию распределения и плотность распределения с.в. Х. Деталь считается годной, если ее размеры попадают в интервал от 49,96 до 50,04. Найдите процент бракованных деталей.
2=900 ч. Найти вероятность того, что продолжительность горения лампы составляет: а) более 1000 ч. б) менее 1000 ч. в) от 940 ч. до 1060 ч. Выписать плотность распределения данной с.в. и изобразить решение п. в) на графике плотности.
2=0,01. Найти вероятность того, что на следующих торгах индекс ценной бумаги будет а) более 1 б) менее 1 в) от 0,98 до 1,02. Выписать функцию распределения и плотность распределения данной с.в.
(Х)=2 мм. а) Найти вероятность брака, если допустимые размеры должны быть 1503 мм. б) Какую точность контролируемого размера можно гарантировать с вероятностью 0,97. в) За какие границы практически не выйдет контролируемый размер детали. Если он выйдет за эти границы, то постарайтесь объяснить ситуацию.
=102,3% - средний процент выработки и дисперсия S2=16. Найти 95% доверительный интервал для генеральной средней, если известно, что признак имеет нормальное распределение.
и
даны ниже. Можно ли считать, что предприятия работают одинаково точно. Уровень значимости выбрать самостоятельно.
Проверьте гипотезу о том, что производительность отделов одинакова. Уровень значимости выбрать самостоятельно.
Сделать вывод о возможности использования линию регрессии в дальнейших прогнозах.
.
.
.
={на выходе появилась бракованная деталь}.Тогда
.
,
.
.
Основные числовые характеристики с.в. Х равны: а) математическое ожидание MX= np=30,8=2,4; б) дисперсия DX= npq=30,80,2=0,48; q=1-p=0,2,
0,7;
;
;
;
,
,
, =np=3.
.
.
.
.
,
.
.
-дисперсия;
-
.
С.в. Х имеет нормальное распределение с параметрами а=150, 2=36.
,
)=Медиана(
)=а=150
==6
,
,
;
,
являются "хорошими" для математического ожидания и дисперсии, т.к. выборка является малой, а
Мода(Х)=3, т.к. значение 3 встречается большее число раз (пять). Построим вариационный ряд: 3,3,3,3,3,5,5,5,6,6,7.Т.к. n-нечетно (n=11), то на месте (n+1)/2=6 в вариационном ряде стоит медиана: Медиана(Х)=5.
.
моду, медиану. Построить гистограмму.
Медиана оценивается по формуле Медиана= L+i
.
.
,
;
. Считая, что наблюдаемый признак имеет нормальное распределение найдите доверительный интервал с надежностью 0,9.
находится по таблице 5 приложения: