85504 (597803), страница 2

Файл №597803 85504 (Алгоритм решения Диофантовых уравнений) 2 страница85504 (597803) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Вообще же, этим методом решается любое уравнение вида:

,

а уравнение Пелля лишь как частный случай, при t = 2 и N = 1.

Уравнение

. (1)

23-Х, У23-Х+1, У23+аХ+В)

Рассмотрим 4 варианта:

- I У - нечётное число, Х - нечётное число, К - чётное число;

- II У - нечётное число, Х - чётное число, К - нечётное число;

- III У - чётное число, Х - чётное число, К - чётное число;

- IV У - чётное число, Х - нечётное число, К - нечётное число.

Решение этого уравнения принципиально ни чем не отличается от решения уравнения Пелля, - в обоих уравнениях наличие двух переменных.

Вариант I.

Во всех четырёх вариантах У>Х, и следовательно 1> 2

Тогда будет

(2)

Получилась система уравнений (1) и (2).

Хотя и без решения системы часть решений уже можно определить.

Рассмотрим частный случай уравнения (2) при m=1.

,при m≥1.

Т.к. K чётное число, тогда K=8, 24, 48, 80, 120, 168, 224, 288, 360 ….

Получится возрастающий ряд K.

Этому ряду K соответствует ряд разностей:

У-Х=2, 4, 6, 8, 10, 12 …. при положительных значениях радикала и

У-Х=-4, -6, -8, -10, -12 …. при отрицательных значениях радикала.

Рассмотрим четыре примера, взяв соответственно:

1) У-Х=2 K=8

2) У-Х=4 K=24

3) У-Х=6 K=48

4) У-Х=8 K=80

1) У=Х+2, подставим в уравнение (1) при K=8

Х1=1 Х2=2 Х3=-2

У1=3 У2=4 У3=0

K=8 K=8 K=8

2) У=Х+4

Х=1

У=5

K=24

3) У=Х+6

Х=1

У=7

K=48

4) У=Х+8

Х1=1 Х2=4 Х3=-4

У1=9 У2=12 У3=4

K=80 K=80 K=80

Вариант II.

(3)

Подставляем в (3), получаем

, m≥1.

При m=1 K примет значения –7, 1, 17, 41, 73, 113 ….;

Как и в предыдущем варианте получится возрастающий ряд K, и ему соответствует ряд разностей:

У-Х=-1, 1, 3, 5, 7, 9….; У-Х=-3, -5, -7, -9….

Вариант III.

После подстановки 1, 2, окончательно получим

, m≥1.

При m=1 K примет значения –4, 8, 28, 56 ….

Этому ряду K соответствует ряд разностей:

У-Х=0, 2, 4, 6….; У-Х=-4, -6, -8, -10….

Вариант IV.

, m≥1.

При m=1 K примет значения 3, 15, 35, 63, 99 ….

Этому ряду K соответствует ряд разностей:

У-Х=1, 3, 5, 7, 9 ….; У-Х=-3, -5, -7, -9, -11….

Уравнения У23-Х, У23-Х+1, У23+аХ+В и прочие уравнения эллиптических кривых познавательного интереса для данного алгоритма не представляют.

Повторяясь, скажу, важно лишь количество неизвестных. Поэтому распишу лишь первое из них.

- I У - чётное число, Х - нечётное число;

- II У - чётное число, Х - чётное число, всегда У > Х, и как следствие 1> 2.

Вариант I.

Т.к.

Тогда

После подстановки

Вариант II.

Сразу пишу ответ

И после всех преобразований и подстановок

Работа при исследовании уравнений данным алгоритмом достаточно монотонная.

Исследование уравнения проведено, кстати, не до конца.

Не рассмотрена ситуация У < Х.

Иррациональные корни уравнения

.

Известно, что данное уравнение имеет иррациональные корни. Но для решения, предположим, что уравнение увидели впервые. И тогда начало решения будет традиционным для данного алгоритма.

Рассмотрим 2 варианта:

- I Х - чётное число, У - нечётное число;

- II Х - нечётное число, У - чётное число.

Всегда Х > У

Вариант I.

Функциональное уравнение общего вида будет:

, где , (1)

Преобразования изображу подробно

(2)

В уравнении (1) ,

Тогда ,

Значения и подставим в формулу (2)

Исходное уравнение

запишем в виде

Тогда

До конца не преобразуя, оставляю решение в виде системы

(3)

Вариант II.

, где , (4)

Преобразования без комментариев.

(5)

В уравнении (4)

Тогда ,

Значения и подставим в формулу (5)

И сразу пишу систему решений

(6)

Итого: иррациональными решениями уравнения

являются две системы уравнений (3) и (6).

Отрицательные значения радикалов не рассматриваю.

Поиск Пифагоровых троек

(1)

Пусть Х – нечётное число, У – чётное число, Z – нечётное число

и Х > У > Z.

,

уравнение представлено в виде , и далее оно расписано в виде произведения (2)

Можно составить три системы уравнений:

а)

б)

в)

И по порядку начинаем рассматривать все три варианта.

Заранее составим заготовку для их решения.

Откуда следует

(3)

а)

Произведя подстановку соотношений (3) и с учётом уравнений (2) получим систему из трёх уравнений с тремя же неизвестными.

После соответствующих преобразований будет

Перед радикалом убран знак «минус» ибо комплексные решения не интересуют.

Простой перебор значений m даёт следующие результаты:

- при m=2 , тогда

- при m=7 , тогда

б) Система (б) после сокращений примет вид

После подстановок (3) и с учётом уравнения (2) получим систему уравнений:

откуда

При m≥1, Z =1, 3, 5, 7, 9, 11…. т.е. все нечётные числа, хотя единицу надо убрать, ибо она не удовлетворяет условию системы (4).

Из (Х-У)(Х+У)=Z2 получаем, систему уравнений

(4)

Решая данную систему, получаем ряд значений Пифагоровых троек.

Х

5

13

25

41

61

85

113

145

181

221

265

313

365

421

У

4

12

24

40

60

84

112

144

180

220

264

312

364

420

Z

3

5

7

9

11

13

15

17

19

21

23

25

27

29

В этой таблице, когда Z является простым числом, дальнейшие расчёты Пифагоровых троек отсутствуют.

Когда Z является составным числом, возможен дальнейший расчёт.

Возьмём Z=15 Z2=225

225=1х 225; 3х75; 5х45; 9х25

Будем рассматривать систему (4), подставляя подчёркнутые произведения .


Х=39, У=36, Z=15, после сокращения на три

Х=13, У=12, Z=5


Х=25, У=20, Z=15, после сокращения на пять

Х=5, У=4, Z=3


Х=17, У=8, Z=15, несколько неожиданный

результат, ибо рассматривается по условию У > Z.

Возьмём Z=27 Z2=729

729=1х729; 3х243; 9х81

Расчёт показывает

Х=123, У=120, Z=27, после сокращения на три Х=41, У=40, Z=9;

Х=45, У=36, Z=27, после сокращения на девять Х=5, У=4, Z=3.

Возьмём Z=35 Z2=1225

1225 = 1х1225; 5х245; 7х175; 25х49.

Х = 125 (25), 91 (13), 37

У = 120 (24), 84 (12), 12

Z = 35 (7), 35 (5), 35

И последний раз в качестве примера

Возьмём Z=39 Z2=1521

1521=1х1521; 3х507; 9х169; 13х117.

Х = 255 (85), 89, 65

У = 252 (84), 80, 52

Z = 39 (13), 39, 39

К сожалению системы пока не вижу.

в) После преобразований получается:

И формула для Z.

Рассмотрим следующий вариант.

От вышеуказанного он отличается следующим условием: У < Z,

а следовательно и < .

Получается девять систем уравнений.

г)

д)

е)

ж)

з)

и)

к)

л)

м)

И после подстановки в эти девять систем значений

из соотношений (3), получается также девять систем значений Х, У, Z.

г)

д)

е)

ж)

з)

и)

к)

л)

м)

И далее, - все девять систем надо решить.

г)

- нет решения в целых числах при любых m.

д)

е) , при m=2, У=8;

Решим уравнение (X-Z)(X+Z)=64 перебором произведений

64=1х64; 2х32; 4х16.

Из соотношения 2х32, получаем


т.е.

Система


Даёт значения

ж) - нет корней в целых числах.

з) , при m=2, У=12 и т.д.

Разберём до конца У=12 и соответственно У2=144.

Число 144 даёт следующие интересующие нас произведения

144=2х72; 4х36; 6х24; 8х18.

Из формулы (Х-Z)(X+Z)=У2 получим следующие значения Х, У, Z.

Х 37

20 (5)

15 (5)

13

У 12

12 (3)

12 (4)

12

Z 35

16 (4)

9 (3)

5

и) - нет корней в целых числах.

к) - нет корней в целых числах.

л) - нет корней в целых числах.

м) - нет корней в целых числах.

Рассмотрим следующий вариант:

- пусть все три числа чётные и Х>У>Z, как и > > .

Заранее знаю, что после сокращения всех членов на 22 уравнение перейдёт в область всех натуральных чисел.

Из последнего уравнения составим три системы уравнений, после соответствующих преобразований, используя соотношения

п)

р)

Рассмотрим все три полученные системы уравнений (н), (п), (р).

н) и преобразуя – Z=2m, получились все чётные числа при m ≥1.

В таблице приведены значения троек для m ≤10, при условии Х-У=2.

Х

5

10

26

37

50

65

82

101

У

3

8

24

35

48

63

80

99

Z

4

6

10

12

14

16

18

20

п) - то же выражение, что и в (н).

р)

После упрощения.

При m=2, 3 значения троек будут

Х 13

34 (17)

У 5

16 (8)

Z 12

30 (15)

При рассмотрении вопроса о Пифагоровых тройках не было целью составление таблиц этих троек. Ибо целью этой статьи является показ возможностей алгоритма решения Диофантовых уравнений.

Решение уравнения Каталана

Характеристики

Тип файла
Документ
Размер
6,12 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее